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Abstract

We develop a model to study the trade-offs associated with introducing re-allocative
mechanisms into dynamic-pricing environments with heterogeneous goods and strate-
gic consumers. Our focus is on airlines that sell seats in vertically-differentiated cabins
and provide upgrade opportunities after an initial purchase via auctions and fixed-price
sales. If consumers anticipate opportunities for an improved reallocation and reduce
outright purchases of premium seats, the screening intention of dynamically-set prices
can be undermined to create circumstances with a greater probability of upgrades and
an ambiguous impact on profits. To study ways to adapt these mechanisms to better
complement dynamic-pricing practices, we estimate the model’s structural parameters
using proprietary data from an airline that includes the price for each itinerary, daily
cabin-specific seat inventories for each flight, bids and purchases of upgrades, and infor-
mation on visits and purchases on the airlines’ website. We find that the mechanisms,
as implemented, transfer a modest amount of surplus from the airline to consumers.
In counterfactual calculations, we explore two ways to improve integration and per-
formance. We find that profits and total welfare increase by introducing state-specific
reserve values to provide commitment for the airline to make the auction less accom-
modating to strategic consumers and making pricing policies dependent on submitted
bids to internalize the option value of the auction while setting prices.

Keywords: Dynamic Pricing, Auctions, Price Discrimination, Upgrades, Airline In-
dustry
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1 Introduction

In many settings, firms use dynamic pricing to allocate a fixed amount of goods or services

to a randomly arriving sequence of customers with privately-known valuations. If the items

to be allocated are heterogeneous, optimal prices must balance current sales against future

demand and effectively screen customers between the differentiated offerings. This is chal-

lenging in practice, and demand uncertainty can result in substantial allocative inefficiencies.

As such, firms often complement dynamic pricing with other strategies intended to reduce

these inefficiencies and increase profits.

In this paper, we develop and estimate a model to study the trade-offs associated with

integration of re-allocative strategies into dynamic pricing environments using data from

the airline industry. Specifically, we examine auctions that allow consumers to bid for up-

grades between vertically-differentiated cabins after an initial purchase.1 Ideally, bids can

be used by the firm to allocate available upgrades to customers with the greatest valuation

while freeing up units of the lesser product for sale, increasing allocative efficiency and prof-

its. However, strategic consumers that anticipate opportunities for an improved reallocation

may reduce outright purchases of premium seats. This can undermine the screening inten-

tion of dynamically-set prices to create circumstances associated with a greater probability

of winning an upgrade through these alternative channels and negatively impact profits.

Despite this trade-off, most airlines use separate vendors for pricing and upgrade decisions,

and the algorithms are not adapted to work together. In particular, the auction is greedy in

the sense that it maximizes revenue given the state encountered by the airline at the time of

the auction, which creates opportunities for strategic consumers to alter the distribution of

states. This type of failure to internalize decision externalities across teams with siloed ob-

jectives is common among firms facing complex problems, as highlighted by Hortaçsu et al.

[2023]. Our focus is to identify effective ways to improve the performance and integration of

these re-allocative mechanisms in settings that rely on dynamic-pricing practices.

Our analysis relies on unique data from a North American airline that implemented

auctions and fixed-price upgrade processes. The data include the price paid and timing of

purchase for each itinerary, daily seat inventories for every flight in the airline’s network, and

information on upgrade bidding and purchases. The auction allows consumers that purchase

an economy fare to bid among a discrete set of values for an upgrade, and any remaining

premium seats at departure are offered at a fixed price on a first-come basis during check-in.

We complement the revenue management and upgrade data with information on visits to

1This practice is particularly common in travel and leisure markets. For example, see Amtrak’s BidUp
program: https://www.amtrak.com/bidup.
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the airline’s website that includes which markets are queried, whether a purchase was made,

and tier status of customers. Together, these data provide a complete picture of the timing

of consumers’ arrivals to the market and their decision-making, which permits our analysis

of the impact of the auction on market outcomes.

The supply side of our model features a monopolistic airline with a fixed number of

seats for sale in two vertically-differentiated cabins. The airline sets prices for both cabins

in each period before departure to maximize profits, while offering customers that purchase

an economy seat the opportunity to bid among a discrete set of values for a chance to

be upgraded to the premium cabin. At a fixed date before departure that is known to

consumers, the airline decides how many, if any, bids to accept. If any seats in the premium

cabin remain unsold at departure, the airline offers upgrades at a fixed price during check-in.

The auction optimizes revenue by balancing the benefit (i.e., bid revenue and one additional

economy seat) and cost (i.e., one less premium seat) associated with each bid. This makes

the auction forward-looking because it accounts for the benefits of reallocation given the

state faced by the airline at the time of the auction (i.e., seats remaining), but not backward

looking because it fails to internalize the influence of bid-acceptance policies on sales prior

to the auction that determine the state.

On the demand side, the presence of the auction and check-in upgrades creates a more

complex decision process for customers. Like previous studies of the airline industry, we

assume that a random number of short-lived consumers of different types with heterogeneous

preferences arrive each period and make a purchase decision: economy, premium, or no-

purchase. Those purchasing economy seats can choose to bid for the possibility of an upgrade

or wait until departure for a chance to be upgraded at a fixed price. This requires consumers

to form beliefs about the possibility of being awarded an upgrade, which must account for the

bidding behavior of other customers and the airline’s bid-acceptance and pricing strategies.

This is particularly complicated because selection into the auction varies by the prices faced

by customers at each point in time, which is a non-stationary stochastic process.

Solving the model requires identifying optimal pricing and bid-acceptance policies for

the airline and the equilibrium beliefs for consumers that are consistent with the probability

of winning an upgrade. The airline’s problem is a straightforward, albeit computationally

intensive, dynamic program that yields state-dependent (i.e., time and cabin capacities)

pricing policies for economy and premium cabins and a threshold value required to accept

a given number of bids at a fixed date before departure (i.e., opportunity cost of premium

seats). Solving for equilibrium beliefs is complicated by customer selection into bidding,

which is driven by the realized path of prices. Specifically, a customer at a particular state

must integrate over all possible past, current, and future bidding by others to form an
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expectation about the probability of winning an upgrade with a particular bid value or

check-in purchase. To solve for such state-dependent beliefs, we use an iterative forward

simulation procedure. This entails simulating customer choices given an initial guess of

beliefs (i.e., probability of winning with a particular bid value at each state), updating

those beliefs based on the airline’s optimal bid-acceptance policy, and then iterating until

convergence between beliefs and the probability of winning. The process typically converges

quickly despite the high-dimensional nature of the problem (i.e., many discrete bid values at

thousands of states).

To estimate the model, we apply the method-of-moments approach of Fox et al. [2016]

and Nevo et al. [2016] to flexibly capture both within- and across-market heterogeneity

in preferences for air travel. This two-step procedure also has the advantage of limiting

the number of times the model is solved during estimation, which is important for our

application.2 In the first step, we solve and simulate the model for a range of candidate

preference parameters that characterize demand for a flight (i.e., a data-generating process)

to calculate outcomes like transacted prices, seat occupancy rates, and results from the

auction and check-in sales. In the second step, for each market, we match moments from

the data to a convex combination of analogous moments for each of the candidate preference

parameters. This yields a flexible discrete distribution of consumer preferences for each

market that captures heterogeneity in preferences across flights within a market.

We find that the model estimates can reproduce features of the data well. The variation

in prices leading up to departure, and between the economy and premium cabins, is ratio-

nalized by market-specific arrival patterns, valuations for travel, and fraction of late-arriving

frequent fliers with greater valuations for travel and quality. Importantly, predictions re-

garding participation in the upgrade processes are also consistent with those in the data.

We match the roughly 25% of the premium seats that are occupied due to the auction and

check-in purchases, and the overall odds of winning the auction closely matches the 0.45

probability observed in the data.

We perform one simple counterfactual simulation to offer comparable results to the extant

literature. As a benchmark to the reduced-form analysis of Marsh et al. [2024b], we examine

the impact on profits and consumer surplus from the introduction of the auction. We find

that profits usually increase, though the average effect is different by market. Due to the

influence of strategic consumers predicted by our model, we find that the introduction of the

auction in some markets results in a decrease in profits from a small transfer on average from

the airline to consumers. Next, like Aryal et al. [2023], we calculate a first-best allocation by

2In a preliminary step, we directly recover the customer arrival process from the web search data for each
market.
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solving a linear program that allocates seating capacity to passengers assuming the airline

has perfect foresight about demand (i.e., arrivals and valuations). This characterizes an

efficient frontier for any distribution of surplus between the airline and consumers and the

opportunity for improvement measured as the gap between current and first-best outcomes.

We find that on average, dynamic pricing alone achieves approximately 98.2% of the first-

best welfare with revenue and consumer surplus contributing 76.4% and 21.1%, respectively.

However, the introduction of the upgrades on profits is ambiguous and depends on the market

and specific data generating process. The counterfactual simulations suggest that upgrades

increase profits on flights with relatively more business travelers who have preferences for

quality more similar to those of the leisure travelers.

Given the failure of the auction to close the gap with first-best efficiency or improve

profits, we consider two ways to improve the complementarity of the auction and revenue-

management system. First, we consider one way to limit manipulation of the auction by

strategic consumers. Specifically, we let the airline commit to optimal state-specific reser-

vation values that increase the cost of accepting bids to internalize the strategic response

of consumers to accommodating bid-acceptance polices. So, the auction is now backward-

and forward-looking by balancing the benefits of accepting bids and reallocating passengers

against the cost of consumers manipulating the path of prices and states prior to the auction.

Next, we explore one way to alter the revenue-management system to account for the existing

optimization policies of the auction. Currently, no bid information is shared by the auction,

which prevents pricing policies from internalizing the option value associated with bids (i.e.,

raises the opportunity cost of a premium sale). Our counterfactual calculation permits the

airline to directly condition pricing policies on collected bids. Calculating the airline’s opti-

mal pricing policies in this setting is much more complex. Most directly, incorporating bids

expands the state space substantially. We overcome this by considering summary statistics

of the distribution of bids collected. Second, and more challenging, a solution to the model

now entails solving a game between the airline and consumers to identify optimal pricing

policies and equilibrium bidding, because bids directly impact pricing policies. To solve this

game, we use an iterative solution method between the airline and consumers’ best responses.

These last two counterfactuals will be complete soon.

Related Literature. This paper contributes to the growing literature in industrial or-

ganization that empirically studies price discrimination. There are numerous studies that

examine a range of discriminatory strategies in different settings: [e.g., Ivaldi and Marti-

mort, 1994, Leslie, 2004, Busse and Rysman, 2005, Crawford and Shum, 2006, Mortimer,

2007, McManus, 2007, Aryal and Gabrielli, 2019, Aryal et al., 2023]. Further, there are

many that focus specifically on intertemporal price discrimination: [e.g., Nevo and Wolfram,
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2002, Nair, 2007, Escobari, 2012, Jian, 2012, Hendel and Nevo, 2013, Lazarev, 2013, Cho

et al., 2018, Williams, 2022a]. We contribute to this literature by studying complex hybrid

approaches used by firms that combine different strategies to price discriminate.

Our model and findings also contribute to the rich literature on dynamic pricing.3 Foun-

dational theoretical studies include Stokey [1979], Gale and Holmes [1993], Dana [1999],

Courty and Li [2000], Armstrong [2006]. Recent empirical work examines a variety of indus-

tries where firms sell an expiring asset with dynamically adjusted prices[e.g. Graddy and

Hall, 2011, Sweeting, 2010, Cho et al., 2018, Waisman, 2021]. Williams [2022b] and Aryal

et al. [2023] are two closely related studies that also study dynamic pricing in the airline in-

dustry. Williams [2022b] contrasts market outcomes and welfare under uniform and dynamic

pricing for a monopolistic airline with a fixed amount of capacity. Aryal et al. [2023] enrich

this framework by modeling a vertically-differentiated aircraft to study both intra-temporal

and intertemporal price-discrimination incentives. We build upon these studies by consid-

ering the welfare consequences of strategies like auctions intended to complement dynamic

pricing of differentiated goods.

There are a number of theoretical studies on the use of auctions for allocating multiple

units of a homogeneous good. Vulcano et al. [2002] characterize optimal auctions for allocat-

ing multiple units of a homogeneous good, Talluri and van Ryzin [1998] examine bid-prices

as a way to price seats on a flight segment, and Ely et al. [2017] consider the use of auctions

to resolve overbooking of a flight. Our setting is similar, but we allow for multiple qualities of

seats and demand is non-stationary. We also contribute to the literature on endogenous en-

try into auctions [e.g. Samuelson, 1985, Levin and Smith, 1994, Marmer et al., 2013, Roberts

and Sweeting, 2013, Gentry and Li, 2014, Gentry et al., 2017], which is known to alter classic

results from auction theory. In our application, variation in prices determines entry into the

auction, such that consumers prefer economy with the possibility of an upgrade to either

premium or economy with certainty. This creates a complex form of selection, which we

resolve through an iterative forward simulation procedure to solve for equilibrium beliefs.

We also contribute to the expansive literature on pricing and consumer choice in the

airline industry. A number of studies examine the relationship between price dispersion,

in lieu of a direct measure of price discrimination, and market power like Borenstein and

Rose [1994], Puller et al. [2012], and Chandra and Lederman [2018]. A more closely related

literature examines strategic aspects of consumer decision-making in the industry. Li et al.

[2014] measure the fraction of consumers that are strategic in the timing the purchases

of their itinerary.4 Lazarev [2013] estimates a model with forward-looking consumers and

3See van Ryzin and Talluri [2005] for a general introduction to revenue-management practices.
4Related, Dilmé and Li [2018] provide a general theoretical framework to examine how the strategic
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a monopoly airline that uses intertemporal price discrimination to examine the effects of

policies prohibiting the resale of airline tickets. Scott [2024] and Li et al. [2024] explore the

effects of uncertainty and cancellation fees in dynamic-pricing environments with forward-

looking consumers.

There are a number of recent studies examining upgrades specifically. Cui et al. [2018]

theoretically study fixed-price upgrades with strategic consumers, while Cui et al. [2019] em-

pirically examine the effect from the introduction of fixed-price upgrades on price dispersion.

[Favrizi, 2024] considers the welfare consequences of fixed-prices upgrades, but assumes that

consumers do not anticipate the possibility of an upgrade. Our analysis combines aspects

from each of these studies by allowing for strategic consumers and fixed-price upgrades,

while also introducing the auction mechanism. Marsh et al. [2024a] and Marsh et al. [2024b]

provide additional details on the web-traffic data that we use to estimate the arrival process

and a detailed analysis of the auction implementation, respectively.

2 Data and Institutional Details

The data for this study come from a major North American airline that uses dynamic pricing

strategies and upgrade mechanisms to allocate seats in vertically-differentiated cabins. The

primary data describe the revenue management and upgrade processes. We supplement

these data with consumer search queries made on the airline’s website, providing additional

information regarding the consumer arrival and search process. In this section, we detail

the upgrade process and describe our data sample in order to motivate a model of revenue

management with reallocation.

2.1 Upgrade Process

As is common in the industry, the airline segments each aircraft into a high-quality premium

cabin and an economy cabin. Each prospective consumer is able to purchase a ticket for

either cabin depending on availability. The airline presents all economy ticket holders with

two opportunities to receive an upgrade to the premium cabin: via a fixed fee when checking

into their flight or through an auction prior to check-in. The opportunity to upgrade at

check-in requires an excess of premium seats at the time of check-in. In contrast, each

passenger who books an economy ticket before the auction has the opportunity to place a

bid regardless of the remaining premium capacity.

Economy passengers place bids using a slider feature characterized by a minimum bid,

timing of purchases by consumers alters the optimal pricing of the firm.
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a maximum bid, and an initial position. An example slider can be seen in Figure 1. Bids

can be placed in discrete increments between the minimum and the maximum. No other

information about the auction is communicated to passengers when placing their bid. The

airline collects bids and decides which bids to accept (if any) on a fixed day approximately

one week before departure. The timing of the bid clearance ahead of departure is uniform

across flights. If a bid is accepted, the passenger must pay the bid amount for the upgrade.5

Figure 1: Example Slider

$320 $480

$440

Notes: The figure shows an example of a slider seen by a passenger participating in an upgrade auction.
The slider features a minimum, maximum, and starting position. Bids can be made by finalizing the
position and submitting the bid.

The existing revenue management system is not adjusted after the introduction of either

upgrade mechanism. The upgrade fees are set ex-ante and are not updated as demand is

realized. Furthermore, the airline does not adjust prices in response to the bids placed by

consumers. In fact, the airline uses the services of a separate vendor to manage both upgrade

systems, meaning the upgrade process is not integrated into the revenue management system

that dynamically sets prices. We exploit this fact in our model by assuming the airline does

not account for the option value of an economy ticket that is created by both upgrade

mechanisms when setting prices.

2.2 Data Sources

A flight in the data is identified by a unique combination of departure date, directional

segment, and flight number. Inventory data track daily changes in seat availability for every

flight that the airline scheduled for departure during the sample period. These data reveal

the number of seats sold and remaining in each cabin at each day leading up to departure.

Booking data contain information from all ticket sales for the corresponding flights, including

the itinerary details, the booking date, the fare paid, the original aircraft-cabin class, and a

passenger identification number.

In addition to the above revenue management data, we use data collected from the two

5If ties need to be broken, the airline uses the passenger’s loyalty status as a tiebreaker.
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passenger upgrade mechanisms. First, we observe all upgrades made at passenger check-in

via the fee. These data include the passenger’s itinerary details and identification number,

as well as the segment-specific upgrade fee. We also observe all bids placed by passengers

for the upgrade auction held prior to passenger check-in. Observations in these data include

the passenger’s itinerary details and identification number, as well as the bid amount, the

minimum and maximum bid the passenger could submit, and whether the bid was accepted.

An itinerary captures a passenger’s departure date, directional segment, and flight num-

ber. This information allows observations to be matched across the aforementioned data sets

by the uniquely identified flight in the inventory data. Likewise, passengers in the booking

data can be linked to both upgrade data sets via the passenger identification number and

the flight information.

We supplement the revenue management data with flight queries made by consumers on

the airline’s website. Each observation in the search data represents a time-stamped web

page visit and includes the search inputs that led the consumer to the web page, such as the

trip origin and destination, departure date, and even the consumer’s loyalty status if they

logged in during their search.

2.3 Sample Selection and Market Definition

The revenue management and upgrade data feature flights drawn from a fifteen-month pe-

riod, during which the airline introduced the auction. We narrow our analysis to the final

three months of flights due in large part to the gradual consumer uptake in the auction

documented in Marsh et al. [2024b]. For each flight, inventories and bookings span almost

a full year leading up to departure. The supplemental search data span nine months in a

nearly adjacent, more recent period.

The revenue management data provide information on flight inventories and consumer

booking counts. Although the search data do not overlap these data, they allow us to observe

both booking counts and search counts for trips in the airline’s network in a nearby time

period. For a given flight segment and day before departure, we find the booking-to-search

ratio in the search data and proportionally match these to the booking counts observed in

the revenue management data.6

In the revenue management data, there are approximately 400 directional flight segments

with an upgrade auction during our three-month sample period. However, because we only

observe trip origin and destination pairs in the search data (as opposed to the flight segments

observed in the revenue management data), we limit our sample to directional segments

6We verify that the distribution of bookings in the revenue management data is reasonably summarized
by the distribution of bookings in the search data.
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that account for all passenger flow to or from one of the airports. This ensures that all

searches with an origin or destination that include that airport must travel along the relevant

directional segment. This cut leaves 94 directional segments.

We also exclude segments that were present in the three-month sample but not present

(or rarely present) in the search data. These include segments that are flown infrequently

or only flown seasonally. This cut reduces the number of directional segments to 60. For

every remaining directional segment, the returning segment also survives these cuts. We

therefore group directional segments together and define a market to be a non-directional

segment. Finally, we drop any markets with fewer than 30 flights in the last quarter of data.

This leaves us with 27 markets (54 directional segments). Appendix A shows the number of

flights, the airport network resulting from this sample selection, and a discussion of the level

of concentration in the resulting markets using supplemental OAG data, the world’s leading

data source for flight data.

2.4 Descriptives

Sample Statistics. Our final sample includes 4,783 flights. Summary statistics from these

flights are presented in Table 1. The average flight travels approximately 1,390 miles, and

nearly half of the flights travel at least 1,600 miles. These flights have an average economy-

to-premium seat ratio of nearly 11 to 1, but the airline configures almost every plane with

at least 10 economy seats for every 1 premium seat. Before even selling a ticket, the airline

creates a scarcity effect that increases the opportunity cost of allocating a premium seat.

The load factor refers to the share of seats within a specified cabin that are allocated

at the reference time. On average, 80% of the seats in both the economy and premium

cabins are allocated at the time of departure, but the median flight has a load factor of

approximately 90% in both cabins. It is worth noting that only 58% of the seats in the

premium cabin are sold at full price. On the day before the auction, 55% of the premium

seats are allocated on average, but an interquartile range of 58% highlights the demand

uncertainty the airline faces. For nearly one-half of the flights in the sample, less than half

of premium seats are allocated a week before departure.

The airline receives 1.57 bids per flight and allocates 0.718 and 1.88 premium seats

through the auction and check-in mechanisms, respectively. Although one might consider

participation in the auction to be low, more than half the flights receive at least one bid.

Further, the relatively cheaper (though less certain) check-in mechanism yields nearly two

upgrades per flight. On the median flight, the premium cabin load factor is 92% at departure,

with 25% of the premium seats allocated via one of the two upgrade mechanisms.
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Table 1: Flight Summary Statistics

Variable Mean St. Dev. 25th 50th 75th N

Flight Details
Flight Distance 1,396.003 907.973 397 1,651 2,109 4,783
Capacity (Econ./Prem.) 11.224 1.947 10.167 10.167 13.500 4,783

Load Factor: Departure
Economy 0.805 0.194 0.722 0.883 0.943 4,783
Premium 0.806 0.259 0.667 0.917 1.000 4,783
Premium (Full Price) 0.589 0.324 0.333 0.667 0.917 4,783

Load Factor: Auction
Economy 0.799 0.200 0.705 0.881 0.943 4,783
Premium 0.546 0.347 0.250 0.583 0.917 4,783

Upgrades
Check-In Upgrades 1.879 2.140 0 1 3 4,783
Number of Bids 1.574 2.324 0 1 2 4,783
Auction Upgrades 0.718 1.224 0 0 1 4,783

Notes: The table shows descriptive statistics from flights in the sample. Details include the flight distances,
seating capacities, allocation of seats, and allocation of upgrades.

Summary statistics for consumer transactions are presented in Table 2. Our sample

contains more than 500,000 consumer bookings. The average fares paid for economy and

premium tickets are $199.35 and $462.74, respectively, but there is quite a bit of variation

across markets and across time leading up to departure within markets. However, it is not

uncommon to see a premium ticket priced at 100% more than an economy ticket.

As referenced above, there is nearly a $100 difference between the average submitted bid

($221.14) and the average check-in fee ($131.39). The sign of the difference between the two

is intuitive because an empty premium seat has far more value to the airline further from

departure. Forgoing the opportunity to sell the seat at full price is much more costly at the

time of the auction. The magnitude of both is also reasonable given that the difference in

average fares is $263.39. If bids were much higher, we would question why consumers do not

purchase a premium ticket at full price.

To measure bid intensity, we normalize each bid relative to the slider presented to the

passenger.7 The average normalized bid is a little less than a quarter (0.229) of the slider,

with the 25th percentile being zero (the slider minimum). Conditional on submitting a bid,

the probability of being upgraded through the auction is 0.447. In general, the distribution

of bids tends heavily towards the lower half of the slider.

7Specifically, the normalized bid is bnormi =
bi−bi
bi−bi

where bnormi is the normalized bid of passenger i, bi is

i’s bid, bi is i’s slider minimum, and bi is i’s slider maximum.
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Table 2: Customer Transaction Summary Statistics

Variable Mean St. Dev. 25th 50th 75th N

Bookings
Economy Fare 199.35 145.24 100.28 170.44 254.40 504,306
Premium Fare 462.74 260.33 293.00 413.00 592.13 30,541

Upgrades
Check-In Fee 131.39 120.39 49.00 59.00 159.00 5,975
Submitted Bid 221.14 145.78 90.00 210.00 315.00 7,528
Slider Minimum 179.38 114.11 80.00 195.00 270.00 7,528
Slider Maximum 367.64 193.10 210.00 420.00 570.00 7,528
Normalized Bid 0.2292 0.2726 0.0000 0.1111 0.3509 7,528
Bid Accepted 0.4469 0.4972 0.0000 0.0000 1.0000 7,528

Notes: The table shows descriptive statistics from customer transactions in the sample. These statistics
come from bookings, as well as the check-in upgrade mechanism and the auction upgrade mechanism.
Details include prices, fees, bids, and auction slider characteristics.

Reallocation Mechanisms. The goal of the airline’s revenue management system is to

maximize expected profits given the number of seats remaining as departure approaches.

Due to demand uncertainty, the airline may find itself in an unfavorable state of the world

where demand realizations lead to too many or too few seats being allocated. When these

unfavorable states are reached, the airline may benefit from reallocating passengers between

cabins and reshuffling the number of remaining seats in each cabin.

Figure 2a demonstrates the effect of both upgrade mechanisms on capacity allocation

leading up to departure. The airline evaluates the submitted bids in the auction on a

fixed day around a week before departure. At this point, a small dip in the percentage of

economy seats allocated can be observed with a corresponding increase in the percentage of

premium seats allocated. Likewise, the check-in process begins a few days before departure,

and we observe a similar dip in the economy percentage and the corresponding increase in

the premium percentage.8 The percentage of premium seats allocated by each mechanism

and day leading up to departure is shown in Figure 2b. The airline allocates 57.6% of all

premium seats via full price premium ticket sales. The check-in and auction mechanisms

account for 15.6% and 6.0% of premium seats, respectively. This means that roughly one-

fifth of all premium seats are allocated using an upgrade mechanism, and nearly one-quarter

of all passengers in the premium cabin are allocated their seat via an economy ticket and

premium upgrade.

The probability of receiving an upgrade through the auction is highly dependent on

8The large decrease in the economy percentage after one day out is associated with check-in upgrades
and cancellations.
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Figure 2: Upgrades as a Reallocation Mechanism

(a) Share of Seats Allocated
Approaching Departure by Cabin

(b) Share of Premium Seats Allocated
Approaching Departure by Mechanism

Notes: The airline chooses which bids to upgrade in the auction period roughly a week before departure
and the check-in process begins a few days before departure. Almost a quarter of all premium seats are
allocated in the period between the auction and departure. Of that quarter, the vast majority are allocated
with an upgrade mechanism.

the number of seats remaining at the time of the auction. Figure 3a explores the upgrade

probability while conditioning on the percentage of seats allocated in each cabin at the time

of the auction. As the premium load factor before the auction increases, the probability of

being upgraded decreases. This is because premium seats become more value as fewer remain,

which increases the opportunity cost associated with an upgrade. As the economy load factor

before the auction increases, we observe a slight decrease in the upgrade probability. We

believe this is the result of two compounding effects: a competition effect and a demand

effect. Flights that have sold more economy seats before the auction will have more bidders

on average. This is the competition effect. However, flights that have sold more economy

seats before the auction are likely to signal higher overall demand for the flight, increasing

the opportunity cost of each premium seat and crowding out potential upgrades. This is the

demand effect.

As the probabilities in Figure 3a are conditional on a state, Figure 3b plots the cor-

responding probabilities for reaching each state. The modal state corresponds to a full

premium cabin and an almost full economy cabin. However, this is only about 20% of the

total mass and the probabilities of the surrounding states drop off quickly with most of the
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remaining states having a relatively flat probability. As most of the variation in the state

probabilities is in the region where the economy load factor before the auction is greater

than 0.5, this highlights the high variability in the premium load factor.

Figure 3: Upgrade Probabilities by Remaining Capacity State

(a) Conditional Probability Heat-Map (b) Joint Distribution Heat-Map

Notes: A “state” is an ordered pair of the share of remaining seats (capacity) in each cabin the day before
the auction. A tile on the heat-map represents one possible state. The economy and premium load factors
before the auction are binned into 12 tiles rounding down. The sum of the product of all tiles in each
sub-figure equals the unconditional upgrade probability from the auction.

The different behavior influenced by the number of remaining premium seats can create

aggregate upgrade probabilities that are not monotonic in the strength of the bid, as seen in

Figure 4a. The upgrade probability peaks in our sample at a normalized bid of about 0.25

before decreasing. These non-monotonic upgrade probabilities are the result of averaging

across flights, which aggregates two different effects, which we name the capacity effect and

bidding effect. Figure 3a has already highlighted that the probability of upgrading is highly

dependent on the number of premium seats remaining before auction. This is the capacity

effect. However, as fewer premium seats remain, the premium price increases, also increasing

the price difference between premium and economy. Because consumers should never bid

more than the difference in prices (as they could just buy premium outright instead of

bidding), this leads to the largest bids being submitted more often when fewer premium

seats remain. This is observed in Figure 4b as the distribution of normalized bids when

only one or two premium seats remain when a consumer bidding first-order stochastically
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dominates the distribution of normalized bids when three or more premium seats remain. The

interaction of these two effects produces the non-monotonic upgrade probabilities because

these larger bids from the bidding effect are less likely to be accepted because of the capacity

effect. This highlights how the unique two-sided entry in upgrade auctions produces economic

behavior different from auctions with traditional one-sided endogenous entry [e.g. Roberts

and Sweeting, 2013, Gentry and Li, 2014, Gentry et al., 2017].

Figure 4: Evidence of Non-Monotonic Upgrade Probabilities

(a) Average Upgrade Probability (b) Submitted Bids Empirical CDF

Notes: The upgrade probability curve in a is calculated using a generalized additive model from ggplot2 in
R. The shaded region represents the 95% confidence region. The empirical CDF in b is calculated using the
empirical frequency estimator.

Search and Arrivals. The search data allow us to directly observe the number of daily

searches on the airline’s website, as well as the searches that result in a purchase. Figure

5a shows the densities of all searches, economy purchases, and premium purchases across all

markets in our sample. The densities of the searches and economy purchases increase over

the time horizon until peaking about one month before departure. In contrast, the density of

premium purchases increases throughout the time horizon. This highlights the opportunity

associated with upgrade passengers through the auction, as many premium purchases are

made in the final week before the flight.

If the consumer logs into their customer account during the browsing session, their loyalty
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Figure 5: Patterns in Searches and Purchases

(a) Search And Purchase Densities (b) Searches and Purchases by Tier Status

Notes: The densities in a are calculated by taking the count of each smoothed variable on each scaled by
the total count across the entire time horizon. The variables are smoothed using a Gaussian kernel and the
rule-of-thumb bandwidth. In b, the raw data is used to calculate the share of total searches and cabin
purchases by loyalty tier. We classify customers into the high tier loyalty category if they are tier 2 or
higher as this is the first tier that must be earned through frequent flying.

status with the airline is also observed.9 Figure 5b decomposes the searches, economy pur-

chases, and premium purchases by tier status. The vast majority of searches and economy

purchases are made by low tier customers. However, more than 35% of premium purchases

are made by high tier customers, even though these customers consist of only 5% of searches.

This highlights how the airline must balance keeping enough seats to sell to these high val-

uation consumers with collecting upgrade revenue from economy passengers.

The descriptive analysis highlights various important features in the data that we capture

in our model. Around one-third of all premium seats allocated are in the last week before

departure with the vast majority through an upgrade mechanism. The upgrade probability

in the auction is highly dependent upon the number of premium seats that remain before

the auction. Consumers appear to respond by submitting larger bids when fewer premium

seats remain, which can create aggregate upgrade probabilities that are non-monotonic in

the relative bid. Premium purchases are more likely closer to departure with high loyalty

9To preserve anonymity, we do not provide details regarding the benefits or the requirements of each tier
status. We refer to low tier customers as those without loyalty status or the lowest possible status and high
tier customers as those with a status above the low tier.
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status consumers are responsible for a disproportionate number these purchases. These

facts motivate a model of non-stationary and stochastic consumer demand where consumers

behave strategically when presented with upgrade mechanisms alongside dynamic pricing in

order to maximize expected utility. The airline will set prices optimally ignoring the upgrade

mechanisms and will behave sequentially rational in each period given the remaining seats

and realized consumer demand.

3 Model

In this section, we present an equilibrium model featuring a profit-maximizing monopoly

airline with a fixed number of vertically-differentiated premium and economy seats on an air-

craft to allocate before departure to strategic consumers. The airline uses both dynamically-

adjusted prices and seat release policies to sell a subset of the remaining seats to a random

number of arriving consumers each period prior to departure. Consumers choose between

premium, economy, and no purchase, and economy purchases include the option to secure an

upgrade by bidding in an auction or purchasing at check-in for a fixed fee if premium seats

remain unsold. Beliefs regarding the possibility of an upgrade are consistent with consumer

and airline behavior.

The airline that supplied the data has a pricing team that sets prices for the initial

allocation using a revenue management algorithm and an upgrade team that relies on a

separate algorithm to design the upgrade mechanisms for a reallocation. Consistent with

Hortaçsu et al. [2023], each team does not internalize how their behavior influences the

other when making decisions. Therefore, we assume that the pricing team does not consider

the upgrade mechanisms, nor any strategic behavior by consumers induced by the upgrade

mechanisms, when making pricing decisions. Similarly, we assume prices are not influenced

by submitted bids, and the upgrade fee is set in period t = 1 and does not change as demand

is realized. These modeling assumptions are consistent with the setting and our data.

The pricing part of our model resembles Aryal et al. [2023], but the addition of the

upgrade mechanisms substantially increases the complexity. Because consumers are forward-

looking and strategically select into cabins, they must have beliefs about the probability of

being upgraded when making purchasing decisions. As beliefs affect choices, the evolution of

remaining capacities and the upgrade beliefs affect one another. This means that a solution

to our model requires solving state-dependent upgrade beliefs in a dynamic, non-stationary

environment that form a fixed point between consumer and airline behavior.
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3.1 Environment

Time is discrete and indexed with t ∈ T = {1, ..., T, T + 1}. Tickets are first made available

in period t = 1, and the airline is able to sell tickets through period t = T . Consumers arrive

to the airport in period T + 1 and check in, and the plane departs at the end of this final

period. The airline is endowed with an initial flight capacity k1 = (kf1 , k
e
1), where kf1 and ke1

represent the total number of premium and economy seats, respectively, on the flight. We

denote kt to be the remaining capacities at period t. The relevant state vector in the model

is therefore kt = (kf , ke, t) ∈ {0, 1, ..., kf1} × {0, 1, ..., ke1} × {1, ..., T, T + 1}.
In each period t < T + 1, Nt ∼ Poisson(λt) consumers arrive and choose between the

premium cabin, economy cabin, and outside option, which is represented by the choice

set {f, e, o}. Consumers must make a decision in the period they arrive, which means

they cannot strategically delay purchase. Consistent with the airline pricing literature [e.g.

Lazarev, 2013, Williams, 2022b, Aryal et al., 2023], each consumer receives a type ω ∈ {B,L}
with probabilities γt and 1 − γt, respectively. ω represents a consumer’s reason for travel:

business (B) or leisure (L).

At the beginning of every period, the airline can set cabin-specific prices pt and a maxi-

mum number of seats qt to sell each period. The airline also has two upgrade mechanisms for

moving passengers from the economy cabin to the premium cabin: an auction mechanism

and a fixed fee mechanism. Consumers are aware of each mechanism and are completely

informed about how they work. The fixed fee mechanism allows economy passengers to

move to the premium cabin by paying a fee r as long as premium seats remain when they

arrive to the airport and check-in.10 The auction mechanism allows economy passengers the

opportunity to submit a bid b immediately following purchase. Bids are from a discrete

bid space B = {b1, ..., bJ} with b1 > 0. Consumers do not have to participate.11 Bids are

collected in a portfolio bt = (b1, ..., bj) which summarizes the total number of bids submitted

of each type from periods 1 to t. A first price auction is held at the very beginning of period

t̃ before the airline sets prices, and the airline sequentially upgrades passengers by choosing

the most desirable bids in bt̃. Consumers who arrive after t̃ cannot submit bids.

3.2 Consumer Demand

Demand is modeled using a pure characteristics approach [e.g. Mussa and Rosen, 1978, Berry

and Pakes, 2007] with two vertically differentiated cabins and an outside option normalized to

10While the airline could set this optimally by maximizing E[V1(k1)|r], we do not take a stance on how
the airline sets r and rely on the observed values of r in the data.

11Not bidding can be interpreted as submitted a bid of zero or b0 ≡ 0.
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zero [e.g. Bresnahan, 1987, Berry, 1994]. Preferences over the three choices are parameterized

as uf (p) = νξ−p, ue(p) = ν−p, and u0(p) = 0. This implies the quality of the economy cabin

is normalized to one (ξe = 1). Preferences are distributed (ν, ξ) ∼ F ω
ν × F ω

ξ where ν ≥ 0,

ξ ≥ 1, and ν ⊥⊥ ξ. We use i subscripts to indicate that (νi, ξi) is a realization for consumer

i of the random variable (νi, ξi). This demand structure implies that all consumers agree f

is higher quality than e; however, they differ in their willingness-to-pay for the quality. We

assume that business travelers have a higher willingness-to-pay for both travel and quality

by requiring that FB
ν ≥ FL

ν and FB
ξ ≥ FL

ξ in first order stochastic dominance.

Consumers have state dependent beliefs for the probability of an upgrade from each bid

value as well as being able to purchase an upgrade at check-in which are denoted %t(k) =

(%1t (k), ..., %Jt (k)) and ϕt(k) respectively. These beliefs are assumed rational in that they

are consistent with consumer and airline behavior, and beliefs are updated via Bayes’ Rule

where possible. Define bat̃ to be the set of bids accepted by the airline. Then for a bid of type

bj ∈ B, %jt(k) = Pr(bj ∈ bat̃ |kt). The conditioning on state kt is from consumers arriving at

time t and observe remaining capacities k. Similarly, let T ai ∈ [T + 1, T + 2) be i’s check-in

time, which is independent across all passengers and unknown to i at the time of purchase.

T ai determines the order in which consumers check-in for their flight. If kfTai is how many

premium seats remain when i arrives to the airport, then ϕt(k) = Pr(kfTai > 0|kt).
Within time period t, consumers arrive at slightly different times ti ∈ [t, t + 1) and get

to make decisions sequentially based on their continuous arrival time.12 Consumers choose

from {f, e, o} by selecting the option with the highest expected utility, {Uf
it, U

e
it, U

o
it}, that

is still available at ti. As the utility of f and o is certain for i, U
f
it = ufit and Uo

it = uoit.

However, consumers form Ue
it by expected over ueit and ufit using their beliefs.

Because the gross utility of the premium cabin is νiξi and the gross utility of the economy

cabin is νi, the gross utility of an upgrade is the difference νiξi − νi = νi(ξi − 1). Consumer

i will only purchase an upgrade at check-in if νi(ξi − 1) ≥ r. Because the utility νi − pet is

sunk after purchasing an economy ticket and the check-in system should only affect bidding

if consumers are willing to pay the upgrade fee, consumer i’s optimal bid, denoted b∗it, solves,

b∗it = arg max
bj∈B

%jt(k)(νi(ξi − 1)− bj) + ϕt(k)
(
1− %jt(k)

)
max

{
0, νi(ξi − 1)− r

}
. (1)

Let %∗it(k) be the belief corresponding to b∗it. Each consumer will have an optimal bid whether

they purchase economy or not, and this bid determines entry into the auction. Putting this

12One way to think of this is that consumer arrive via some (potentially non-homogeneous) Poisson process
and all consumers who arrived in [t, t+ 1) see prices pt which were set by the airline at the beginning of the

period. If λ(t) is the arrival rate, then Nt ∼ Poisson(λt) where λt =
∫ t+1

t
λ(s)ds.
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all together, consumer i’s expected utility of purchasing economy Ue
it is,

Ue
it = νi − pet + %∗it(k)

(
νi(ξi − 1)− b∗it

)
+ ϕt(k)

(
1− %∗it(k)

)
max

{
0, νi(ξi − 1)− r

}
. (2)

Consumers make optimal choice d∗it ∈ {f, e, o} by comparing ufit, U
e
it, and uoit and selecting

the alternative with the highest expected utility still available at purchase time ti.

3.3 Pricing Team’s Dynamic Program

Prices are set for each period by a pricing team who wants to maximize expected profits

ignoring upgrades. Along with the cabin specific prices, p = (pf , pe), the team also chooses a

corresponding maximum number of the remaining seats, q = (qf , qe) with qf ≤ kft , q
e ≤ ket ,

that will be sold in period t at prices p. Let Qf (y,p, q) and Qe(y,p, q) be the quantity

demanded for the premium and economy cabins respectively given demand realizations y =

(ti, νi, ξi)
n
i=1, prices p, and seat release policies q where n is a realization of Nt.

13 Define

R(y,p, q) = pfQf (y,p, q) + peQe(y,p, q) to be the revenue from demand realizations y,

prices p, and seat release policies q. Then the expected revenue at t from prices p with

seat release policies q is Et[R(y,p, q)] = pfEt[Qf (y,p, q)] + peEt[Qe(y,p, q)] where the

expectation is taken over demand realizations y.

The pricing team must set prices at the beginning of the period before consumers arrive

and never observes ωi, νi, nor ξi. Tickets sold in each cabin have a constant marginal

“peanut” cost of servicing a passenger in the respective cabin: c = (cf , ce) with ce ≤ cf .14

Costs are realized at the end of period T + 1. Then the total cost function for a flight is

C(k) = c · (k1 − k) = cf (kf1 − kf ) + ce(ke1 − ke). The airline’s discount rate, δ, is set to 1.

Because we assume the pricing team ignores the upgrade mechanisms when setting prices,

the terminal condition for unsold capacity at departure is VT+1(k) = 0,∀k ∈ K. This sets

up a dynamic program for the pricing team to solve to obtain a price and seat release policy.

Using backwards induction, the optimal policies in the last period solve

VT (k) = max
q ∈K
p∈R2

+

ET [R(y,p, q)]−
∫

k′∈K

C(k′)dHT (k′|k,p), (3)

13Note that the quantity demanded for a cabin can never be larger than its remaining capacity due to the
sequential purchasing process.

14These marginal costs are referred to as “peanut” costs as they represent the cost of serving a passenger
in cabin m, which sometimes include complementary items such as snacks or sleep masks. The items given
to premium passengers are often higher quality than those given to economy passengers which is reflected in
the higher peanuts costs.
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and in all preceding periods solve

Vt(k) = max
q ∈K
p∈R2

+

Et[R(y,p, q)] +

∫
k′∈K

Vt+1(k
′)dHt(k

′|k,p), (4)

where K is the state space and Ht(k
′|k,p) = Pr(kf

′ ≤ x, ke
′ ≤ y|k,p) is the distribution of

next period’s state conditional upon this period’s state and prices. The remaining capacities

for each cabin evolve with the laws of motion

kft+1 = kft −Qf (y,p, q) and ket+1 = ket −Qe(y,p, q). (5)

Define the solution to Equation 3 and 4 with the laws of motion defined by Equation 5 and

terminal condition VT+1(k) = 0,∀k ∈ K to be the pricing policy function pt(k) and seat

release policy function qt(k).

3.4 Upgrade Team’s Choice of Auction Upgrades

At the beginning of the auction period, the upgrade team selects the most desirable offers

from the collection of submitted bids. bt̃, and upgrades those passengers. Let iu = (−1, 1)

be the upgrade vector. The interpretation is that an upgrade changes the remaining capacity

vector k by removing one premium seat (the negative 1) and adding one economy seat (the

positive 1). Accepting n bids at t̃ means the upgrade team is changing the remaining capacity

state for the flight from kt̃ to kt̃+ni
u by reallocating n passengers from the economy cabin to

the premium cabin. Although the airline collects auction revenue and an additional economy

seat to sell in the future with each auction upgrade, it also imposes an opportunity cost on

the airline because the premium seat allocated with the auction can no longer be sold in the

future through dynamic pricing and, if it remains unsold at T + 1, at check-in. We model

the upgrade team’s optimal number of auction upgrades by assuming that it continues to

accept bids until the marginal revenue of the next bid accepted is less than the marginal

opportunity cost of the upgrade.

To define the marginal opportunity cost of an upgrade, consider the value of holding

k = (kf , ke) remaining seats in each cabin at the start of the period t. Each seat can be sold

through prices in remaining periods {t, t+ 1, ..., T} and the remaining premium seats can be

allocated through check-in upgrades in period T + 1 for price r. As Vt(k) is the value at t

to the airline by selling seats k through dynamic pricing only, define Ut(k) to be the value

of k at t and selling them with check-in upgrades.15 Because optimal prices are assumed to

15See Appendix B for the formal definition of Ut(k).
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be set ignoring the upgrades, the total value of k at t, denoted TVt(k), is simply the sum of

Vt(k) and Ut(k) i.e. TVt(k) = Vt(k) + Ut(k). Therefore, the opportunity cost of n upgrades

through the auction is TVt(k+niu)−TVt(k).16 Define the marginal opportunity cost of the

nth upgrade, denoted ∆TVt(n,k), to be

∆TVt(n,k) =


0 if n = 0

TVt(k + niu)− TVt(k + (n− 1)iu) if n ∈ {1, 2, ..., kf}

∞ otherwise.

(6)

If ∆TVt(n,k) is increasing in n, then the upgrade team will continue accepting the highest

bids at time t̃ until the marginal cost of an upgrade exceeds the marginal revenue, or

∆TVt̃(n+ 1,k) > b
(n+1)

t̃
, (7)

where b(n) is the nth highest bid.17 Let nu
t̃
(k, b) be the smallest n that satisfies Equation 7

given remaining capacities k and bid portfolio b i.e. nu
t̃
(k, b) is the upgrade team’s optimal

number of auction upgrades given k and b at t̃.

3.5 Timing of Entire Model

Putting this all together, the timing of the model is:

1. The airline is endowed with a fixed initial capacity vector k1 of premium and economy

seats to sell over time and sets a fixed fee r for upgrades if any premium seats remain

in period T + 1.

2. For time periods t ≤ T ,

i. If t = t̃, upgrade team selects nut (k, b) passengers to upgrade and resets capacity

state to k + nut (k, b)iu.

ii. Pricing team releases qt(k) in each cabin to be sold at prices pt(k) given state kt.

iii. Nt ∼ Poisson(λt) consumers arrive in [t, t + 1) and consumer i has travel type

ωi ∈ {B,L} with probabilities γt and 1− γt, respectively.

a) Each consumer i with travel type ωi realizes their preferences (νi, ξi) from

distributions F ω
ν and F ω

ξ where ω = ωi.

16Because costs are realized at the end of T+1, the change in the passenger’s peanut cost from the upgrade
is already taken into account through ∆Vt(n,k) as defined in Equation 3.

17If ∆TVt(n,k) is not increasing in n, the optimal number of auction upgrades is the number that maxi-
mizes the total auction revenue minus the total opportunity cost. See Appendix B for a formal treatment.
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Figure 6: Diagram of Timing for Entire Model

Airline Action

Consumer Action

Airline endowed with capacities k1 = (kf1 , k
e
1)

and sets check-in fee r

If t = t̃, upgrade nut bids from bt and reset state to k + nut i
u

Then set qt(k) and pt(k) given state kt to max Vt(k)

Nt Sequentially Arrive: ti ∈ [t, t+ 1)

NB
t Business Arrivals NL

t Leisure Arrivals

∀i ∈ {1, ..., NB
t }

(νi, ξi) ∼ FB
ν × FB

ξ

∀i ∈ {1, ..., NL
t }

(νi, ξi) ∼ FL
ν × FL

ξ

Each i chooses d∗it ∈ {f, e, o} by comparing ufit, U
e
it, and uoit

If d∗it = e, bid b∗it added to bt

Each i check-in at T ai
Upgrade if d∗it = e, kfTai > 0, and νi(ξi − 1) ≥ r

Plane departs and realizes costs C(kT+2)

t = 1

γt 1− γt

if t < T

Advance t
to t+ 1

if t = T

Period
t

Period
T + 1

End of
T + 1

Notes: Flow chart of the entire model.
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b) Consumers form upgrade beliefs ϕt(k), %t(k) and choose their most preferred

option in {f, e, o} sequentially based on their arrival time ti ∈ [t, t+ 1).

c) If purchasing economy and t < t̃, consumers submits bid b∗it where the win

beliefs are calculated via Bayes’ Rule, and the airline adds b∗it to bt.

3. At period T + 1, consumers receive independent, random check-in times T ai ∈ [T +

1, T + 2).

i. If consumer i has an economy ticket, kfTai > 0, and νi(ξi−1) > r, i pays the airline

r to be upgraded to the premium cabin, and the airline updates k to k + iu.

4. After all consumers arrive to the airport and check-in, the plane departs with final

state kT+2 and realizes costs C(kT+2).
18

In the next section discusses how we solve and estimate this model.

4 Model Solution and Estimation

Our approach to estimation seeks to limit the computational burden associated with repeat-

edly solving the model while allowing for a flexible distribution of preference heterogeneity

across flights within each market. We first discuss the parameterization of the model, which

corresponds to a demand data-generating process for a flight. Next, we explain the process

to solve for optimal pricing policies and equilibrium beliefs for a given value of the parame-

ters. Finally, we present our adaptation of the moment-based methodology from Fox et al.

[2016] and Nevo et al. [2016] to recover the distribution of preferences across flights within

each market.

4.1 Model Parameterization

The primitives that describe a data-generating process (DGP) for demand for a flight in our

model are ψ =
(
(FL

ν , F
B
ν , F

L
ξ , F

B
ξ ), (k1, c), (t̃,B, r), (λt, γt)

T
t=1

)
. We group the parameters

into four sets: preference distributions, airline capacity and cost values, upgrade features,

and arrival process.

A number of features of the data-generating process are directly observed in the data

for flights in each market: initial capacities k1, check-in fee r, auction timing t̃, and the bid

space B. For those few markets with a minimal amount of variation across flights in the

18T+2 is used for the remaining capacity vector at departure to emphasize that it is the remaining capacity
after all check-in upgrades since check-in times can be anywhere in [T + 1, T + 2).
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check-in fee, we use the modal value. Based on the data, we set the slider minimum b1 ∈ B
equal to 0.75 time r and slider maximum bJ ∈ B equal to 1.5 times r, and allow for J = 10

discrete bid values in this interval.19 Like Aryal et al. [2023], we use industry estimates to

approximate the explicit marginal costs (i.e., peanut costs) to be cf = 10 and ce = 5.

For each market, we directly recover the overall arrival process, i.e., {λt}Tt=1, from the

search data but make functional form assumptions for the mixing process {γt}Tt=1. Specif-

ically, we observe the average number and composition of arrivals for each flight in the

market at a daily frequency. Due to computational limitations, we set T = 15 and the pe-

riods are defined by days before departure cutoffs of {330, 180, 150, 120, 90, 60, 45, 40, 35, 30,

25, 20, 15, 10, 5}. For example, the first and last periods correspond to days [181, 331) and

[0, 6), respectively. Given this discretization, we non-parametrically estimate the vector of

market-specific mean-number and type-composition parameters characterizing the overall

arrival process, {λ̂t}Tt=1.
20 To parameterize the mixing process, we follow Aryal et al. [2023]

and use the following functional form

γt = min{∆γ(t− 1), 1}, (8)

and estimate the distribution of ∆γ within a market along with the demand parameters.

Given that the components of
(
(k1, c), (t̃,B, r), {λt}Tt=1

)
are observed or can be directly

recovered from the data for each market, the only choice to be made is regarding param-

eterization of the distributions of valuations for air travel,
(
FL
ν , F

B
ν , F

L
ξ , F

B
ξ

)
. We assume

that (FL
ν , F

B
ν ) are truncated Exponential distributions with means

(
µLν , µ

B
ν ), where µLν ≤ µBν .

Similarly, (FL
ξ , F

B
ξ ) are the resulting distribution of adding one to a truncated Exponential

distribution with means (µLξ , µ
B
ξ ), where µLξ ≤ µBξ .21 To ensure that µLν ≤ µBν and µLξ ≤ µBξ ,

we let µBν = µLν (1+δBν ) and µBξ = µLξ +δBξ , where δBν ≥ 0, δBξ ≥ 0. We then estimate (δBν , δ
B
ξ ),

rather than (µBν , µ
B
ξ ) directly.

This simplifies the task for estimation to recovering the distribution of data-generating

processes for flight-specific demand in each of the 27 markets characterized by an observ-

able set of features
(
(k1, c), (t̃,B, r), {λt}Tt=1

)
. Specifically, we assume that for each market,

there is a distribution of the vector
(
µLν , δ

B
ν , δ

L
ξ , δ

B
ξ ,∆

γ
)

that captures heterogeneity in de-

mand across flights within the market. We assume that the airline knows the data-generating

process for each flight, i.e., the value of
(
µLν , δ

B
ν , δ

L
ξ , δ

B
ξ ,∆

γ
)

from the market-specific distribu-

tion, but not the realization from that process that generates a stochastic number of arrivals

19See Appendix D.1 for evidence supporting these choices.
20See Appendix for details regarding our nearest-neighbor kernel based approach.
21Truncation at the 95th percentile helps reduce the influence of extreme outliers given that the computa-

tional demands of solving the model require using a limited number of simulations.
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and valuations determining demand.

4.2 Solving the Model

Before discussing estimation, we describe the process to solve the model for a given value of

ψ =
(
(FL

ν , F
B
ν , F

L
ξ , F

B
ξ ), (k1, c), (t̃,B, r), (λt, γt)

T
t=1

)
. A solution to the model entails pricing

and seat release policies that solves the airline’s dynamic program, i.e., pt(k) and qt(k)

and corresponding value function Vt(k), and equilibrium beliefs consistent with the airline’s

optimal bid acceptance policy, i.e., %t(k), ϕt(k), and upgrade value function Ut(k).

As mentioned above, the airline has separate pricing and upgrade teams. The pricing

team does not account for the possibility of upgrades when setting prices, and the auc-

tion team does not account for the implications of their acceptance policies on consumer

purchases. This reduces the pricing team’s problem to solving a straightforward, albeit com-

putationally demanding, finite-horizon mixed-integer dynamic program that yields state-

dependent (i.e., t and k) policies
(
pt(k;ψ), qt(k;ψ)

)
that vary by the DGP for the flight’s

demand (i.e., ψ) which is known to the airline. We solve the problem via backward recursion,

relying on simulation to form expectations regarding demand (i.e., number of arrivals each

period and associated valuations) and interpolation to approximate the value function.22

Specifically, in each time period, we draw 150 realizations of demand and solve for the

optimal pricing policy and value function at the following capacities {0, 1, 2, 3, 6, 9, ..., kf1}
and {0, 1, 2, 3, 6, 11, 18, 34, 50, ..., ke1} where the ellipses are increments of 3 and 16 for the

premium and economy cabins, respectively. We then use modified Akima cubic Hermite

interpolation elsewhere to obtain the value function in each state. However, interpolation of

policy functions is complicated by the fact that if no seats are released in a cabin when there

are still remaining seats, the associated price from the optimization routine is meaningless.

To get around this, we require that the airline must release at least one of the remaining seats

in each cabin. To interpolate the optimal seat release policies, qt(k), we linearly interpolate

the seat release policies at the same basis points for the policy function interpolation, round

the result to the non-zero integer, and then take the minimum between this rounded integer

and the number of remaining seats. Interpolation of the pricing policies, p(k) then follows

the value function interpolation.

Given a pricing and seat release policy for a given demand DGP,
(
pt(k;ψ), qt(k;ψ)

)
, the

airline’s upgrade team decides on a bid acceptance policy that makes the most advantageous

reallocation between cabins given the state at the time of the auction t̃.23 As described

22We solve the model using MATLAB 2024b and use the MIDACO [Schlüter et al., 2012] solver for solving
the pricing team’s dynamic program.

23Consistent with the airline not adjusting r based on the state at check-in, we treat it as a fixed market-
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above, the optimal policy balances revenue from accepting bids against the cost of altering

the number of seats for sale in each cabin in the time remaining before departure. This

makes the policy forward-looking, but not backward looking because it fails to account

for response of strategic consumers. Consumers anticipating a favorable opportunity for an

upgrade will opt to purchase economy and bid rather than purchase premium. This alters the

distribution of states encountered by the airline at the time of the auction and can increase

the probability of an upgrade if the competitive effect of additional selection into the auction

doesn’t offset it.24 This strategic response by consumers makes the auction team’s objective

of maximizing revenue from t̃ onward inconsistent with overall revenue maximization and

substantially complicates solving for equilibrium beliefs.

The complication is that equilibrium beliefs are the solution to a complex game between

consumers that generates win probabilities for each bid value at every state that are con-

sistent with the outcomes from the airline’s optimal bid-acceptance policy. A Bayesian

Nash Equilibrium requires solving for a fixed point to consumer’s choice problem with

the constraint of the airline’s optimal response imposed, which presents several compu-

tational challenges. First, is simply the dimensionality of the problem. For a demand DGP

and accompanying pricing and seat release policy,
(
pt(k;ψ), qt(k;ψ)

)
, one must solve for

kf1×ke1×t̃ ≈ 30, 000 vectors of length J + 1 with all elements in [0, 1], i.e.,
(
%t(k;ψ), ϕt(k;ψ)

)
at each state. Second, the integral to calculate consumers’ expectations of an upgrade with

a particular bid value is high dimensional. A consumer must consider the distribution of

competing bids given previous and future states, which depends upon the path of prices

that drives selection into the auction. This requires integrating over all possible paths of

prices that pass through the consumer’s state to generate the correct conditional distribu-

tion of competing bids. Finally, is imposition of the constraint that the airline’s optimal bid

acceptances are consistent with the fixed point to the consumer’s problem.

To overcome these challenges, we develop an iterative forward-simulation procedure. We

begin by simulating consumers’ choices R times with an initial set of beliefs for each state,

i.e., %0
t (k;ψ) and ϕ0

t (k;ψ), initializing the process at full capacity in the first period, (kf1 , k
e
1).

The result is R realized paths for the demand process, which includes the distribution of

bids and remaining capacity in each cabin at each point in time. Figure 7 provides a visual

representation of this process. Considering the subset of the R paths that pass through a

particular state, (k, t), one can approximate the distribution of competing bids and states

at any point in time for a consumer at that state, (k, t). This process accounts for selection

of consumers into the auction driven by the path of prices that reach a given state, and can

specific observable known to consumers.
24The competitive effect is limited by the minimum slider value.
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Figure 7: Visualizing of Simulated Demand Paths
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Notes: Nodes represent different capacities at a point in time, while arrows represent simulated paths for
the demand DGP between states over time. The collection of bids submitted prior to period t for
simulation r is denoted by brt . The dotted ellipses indicate the simulated paths for the demand DGP that
pass through k at time t and are relevant for forming consumers’ beliefs at that state.

be repeated for each state using different subsets of the R simulated paths.

For each realization or simulated path, we then use the airline’s bid-acceptance policy

to identify which bids to accept and the number of check-in upgrades purchased by those

that are willing to pay r and were not awarded an upgrade through the auction. For each

state, this permits a direct calculation of the probability of winning an upgrade either by

bidding a particular amount or by purchasing at check-in.25 If a particular bid value is

never placed at a given state for any of the R simulations, the win probability can be

directly inferred from the airline’s bid acceptance policy (i.e., what the airline would do

if such a bid were placed given the state at the time of the auction). These steps are

then repeated with the initial beliefs replaced by the outcomes generated by the airline’s

optimal response to consumers’ choices, and this entire process is iterated upon until beliefs

are unchanged (i.e., equal to the outcome of the airline’s bid acceptance policy).26 Upon

convergence, the model solution is characterized by pricing and seat release policies along

with equilibrium beliefs and the corresponding value functions,
(
pt(k;ψ), qt(k;ψ), Vt(k;ψ)

)
25Ties in the auction are broken randomly.
26Further details of the process for solving the model are in Appendix C.
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and
(
%t(k;ψ), ϕt(k;ψ), Ut(k;ψ)

)
, respectively, that can be simulated to generate actions by

the airline and consumers to be matched to the data.

4.3 Estimation

Our estimation procedure seeks to flexibly capture heterogeneity in demand across flights

within and across markets while remaining computationally tractable. As described above,

flights in a market are characterized by common features like the upgrade mechanisms,

(t̃,B, r), aircraft capacity and marginal costs (k1, c), and arrival process, {λt}Tt=1. Con-

sumers’ preferences for a particular flight within a market are given by a value of the vector,

(µLν , δ
B
ν , δ

L
ξ , δ

B
ξ ,∆γ), which is known to the airline. Given the possibility of important un-

observed sources of heterogeneity in the DGP of demand for flights within a market (e.g.,

Monday morning flights have greater demand), we seek to flexibly recover the distribution

of this vector within each market.

To achieve the desired flexibility in capturing heterogeneity in demand across flights and

maintain computational feasibility, we estimate the model using the method-of-moments

methodology of Fox et al. [2016] and Nevo et al. [2016]. The approach limits computation by

solving the model a predetermined number of times for different “candidate” demand DGPs

for flights in each market, and permits flexibility by identifying the mixture of demand

DGPs for flights (i.e., weights for each “candidate”) that best match empirical moments in

the market. The result is a flexible discrete distribution of (µLν , δ
B
ν , δ

L
ξ , δ

B
ξ ,∆

γ) in each market

with given attributes of
(
(k1, c), (t̃,Bm, rm), {λ̂mt}Tt=1

)
.

For each market, the first step of the process is purely computational. We drawH = 1, 500

candidate demand DGPs from the parameter vector (µLν , δ
B
ν , δ

L
ξ , δ

B
ξ ,∆

γ) using Halton sets.

We then transform those draws using a uniform distribution with support large enough to

cover the range of behaviors observed in the data.27 For each of the H draws, we then

solve the model for the 27 different values of the vector,
(
(k1, c), (t̃,B, r), {λ̂mt}Tt=1

)
, that

describes each market. This fixes the number of times that the model must be solved at

40, 500 and creates a rich set of demand DGPs for flights in each market characterized by

pricing and seat release policies for the airline,
(
pt(k;ψ), qt(k;ψ)

)
, and equilibrium beliefs

for consumers,
(
%t(k;ψ), ϕt(k;ψ)

)
.

In the next step, we calculate Ng moments from the model for each market by aggregating

data across flights and collect them in an Ng×1 market-specific vector ĝdatm . We then generate

analogous moments via simulation from each of the H candidate demand DGPs in every

27We set the lower bound and upper bound for µLν equal to 0 and 350 and for δLξ , δBν , and δBξ equal to
0 and 1.5, respectively. The lower bound of ∆γ is naturally 0 with the upper bound being 0.075, roughly
where γT would be equal to 1. The details of this process are described in Appendix D.2.
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market and denote the collection of these vectors (i.e., an Ng ×H matrix) for each market

by ĝmod
m . The estimation procedure then proceeds by identifying the mixture of candidate

demand DGPs for each market that best matches the moments from the data. Specifically,

we estimate weights θ̂m that satisfy

θ̂m = arg min
θ

gm(θ)′gm(θ)

subject to
H∑
h=1

θh = 1 with θh ≥ 0,
(9)

where gm(θ) = ĝdatm − ĝmod
m θ is the difference between the empirical moments and the

weighted average of the analogous moments from the H candidate demand DGPs in market

m. The solution to Equation 9, θ̂m, is the estimate of the probability weights which define

a discrete distribution G(ψ; θ̂m) for types of flights in market m.

4.4 Identification

The objects that need to be identified in this model are the arrival process Λm and the

distribution of random coefficients, Gm, for flights in each market, m ∈ {1, ..., 27}. Iden-

tification of the arrival process requires a few assumptions because the search data covers

a different time period than the rest of the data. For the arrival rates λt, the identifying

assumption is that the booking rate (i.e. the probability a consumer purchases a ticket after

arriving) remains the same in each period between the two different sample periods. Be-

cause we observe the number of daily bookings in the revenue management data, the arrival

process is identified by taking the ratio of the average number of booking for each period

and market from the revenue management data and dividing by the average booking rate in

the corresponding period and market from the search data.

Identification of the distribution Gm comes down to uniquely identifying the probability

weights θm. This requires choosing moments that can distinguish between different types

of candidate flights. The columns of matrix ĝmod
m are the moments for each candidate type,

and identification of the weights θm requires only the familiar rank condition from OLS:

rank(ĝmod
m

′ĝmod
m ) = |θm| = H. This means that the moments used for estimation must

distinguish between the candidate parameter vectors so that the columns of ĝmod
m are linearly

independent and ĝmod
m

′ĝmod
m is invertible.

Because the model is nonlinear, intuition for how parameters influence moments is not al-

ways clear as most moments are influenced by multiple parameters. We present the moments

used for estimation below along with a discussion of which the moments are informative for

which parameters.
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1. The distributions of economy and premium fares for each period;

2. The joint distribution of economy and premium fares for each period;

3. The distributions of economy and premium load factors for each period;

4. The joint distribution of economy and premium load factors for each period;

5. The joint distribution of cabin prices and load factors for both cabins and each period;

6. The distribution of the fare gap, i.e. difference between premium and economy fares,

each period;

7. The distribution of the total dollar value of bids submitted for each period;

8. The distribution of the total dollar value of the bid portfolio in each time period;

9. The distribution of the number of check-in upgrades purchased;

10. The distribution of upgrade load factors i.e. the share of premium seats sold through

an upgrade.

Moments (1) and (2) identify all four parameters: µLν , δBν , δLξ , and δBξ . Each parameter (as

well as the arrival process) influences the optimal prices set by the airline. Higher parameter

values for µLν and δBν should result in higher economy prices in each time period. Likewise,

larger values of δLξ and δBξ should result in higher premium prices. Furthermore, (2) helps

pin down the parameters for F ω
ν relative to F ω

ξ as the joint distribution is informative of

the fare gap between the two cabins and pins down the parameters of valuation distribution

relative to the quality distribution. Moments (3) and (4) also identify all four parameters

using similar reasoning; however, they are particularly useful for separating the leisure and

business parameters as business travelers are more likely to purchase premium tickets at full

price rather than economy tickets. Moments (5) help identify the leisure parameters from

the business parameters for similar reasons.

The moments in (6) are informative of µLξ and δBξ . For those who purchase premium,

their gross utility of the upgrade must be larger than the price difference. Without upgrades,

the maximum and minimum price differences across all periods bound the distribution of

ξ. However, the presence of upgrades introduces time-varying preferences which affects who

buys premium outright. Because of this, moments about the upgrade process are needed to

separate δLξ from δBξ . Moments (7), (8), (9), and (9) help separately identify µLν from δLξ .

Because business travelers are more likely to purchase full price premium tickets, upgrades

are more likely to be purchased by leisure travelers. As the gross utility of an upgrade is
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νi(ξi − 1), the distribution of bids and check-in upgrades purchased helps identify both µLν

and δLξ . While both parameters will affect the upgrade moments, larger values of δLξ will

result in more and higher bids as well as more check-ins purchased. Whereas, higher values

of µLν alone will result in higher prices all around.

Lastly, because the demand parameters are time-invariant and only the composition of

passengers changes over time, intertemporal variation in the distributions of load factors and

fares identifies ∆γ. While identification of δBν and δBξ comes from the variation of the fare

and load factor distributions with-in a time period, the variation over time is informative for

how the mix of passengers is changing.

To form moments from the distributions listed above, we create a grid of 100 equally

spaced points between the 2nd and 98th percentiles in the data for each distribution. The

grids vary by market and, when applicable, time period. For joint distributions of two vari-

ables, 10 equally spaced points for each variable are created in the same manner and all

combinations of those 10 points forms a grid of 100 points. Each grid is held fixed during

estimation and the quantile is calculated at each grid point in the data and equivalent simu-

lated objects from the model. With the list above, 100 moments of 167 different distributions

are used to identify the distribution of random coefficients in each market. This means that

16,700 moments are used to identify 1,500 weights.

5 Results

This section lays out the results of estimation and various counterfactuals. We first explore

the estimated distribution of demand parameters and how they vary across markets. After

that, we explore various counterfactuals aimed at the impact of the upgrade mechanisms on

profit and consumer surplus as well as who the upgrades can be integrated with dynamic

pricing. Reallocation can potentially alleviate inefficiencies that arise from misallocation due

to intertemporal and intratemporal uncertainty. The estimated model allows us to calculate

counterfactual profits, consumer surplus, and total welfare for changes to the design of

the upgrade mechanisms and the allocation mechanism more generally. The counterfactual

experiments we preform allow us to compare the split of welfare obtained under each to

different welfare benchmarks.

Relatively few of the 1,500 candidate DGPs are needed to explain the vast majority of

the distributions of flights within a market. Figure 8 shows that number of DGPs needed

to explain 99.99% of the weight in a market ranges from 8 in Market 2 to 25 in Market 7,

with the average count being 18. In total, only 488 of the 40,500 candidate DGPs across all

markets receive a weight of 0.0001 or greater.
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Figure 8: Number of DGPs By Market with Estimated Weights of 0.0001 or Greater

Notes: Each bar indicates the fewest number of candidate DGPs needed to account for 99.99% of the
probability mass in each market. Each market is labeled with an index from 1 to 27.

Figure 9 shows the estimated arrival process for each market along with an aggregate

estimate obtained by averaging across markets.28 The arrival rates recovered directly from

the search data are in 9a, while the distributions in Figure 9b are the result of solving

equation 9 for each market and using the estimated weights of the joint distributions to

obtain the marginal distribution. The level and shape of arrival rates differ across markets,

with arrivals peaking between 50 and 100 days before departure in most markets. The

business probability increment distribution also varies substantially across markets, with

each distribution’s mode clustering around three noticeable points: 0, 0.035, and 0.07.

5.1 Consumer and Market Heterogeneity

Our results suggest that there is substantial heterogeneity in consumers’ preferences for travel

and quality. Figure 10 shows the estimated aggregate marginal distributions of consumer

preferences for leisure and business travelers. These parameters are interpreted as the mean

willingness-to-pay for a flight (µων ) and the mean quality multiplier for the premium cabin

28See Appendix D.3.1 for a discussion on how we average across markets.
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Figure 9: Estimated Arrival Process

(a) Daily Arrivals by Market (b) Per-Period Business Probability Increment

Notes: The above figures depict the estimated arrival process by market. The average process aggregated
across markets is shown in black and the individual market processes are shown in gray. While the
estimated distribution in panel b is discrete, a weighted kernel density estimator with the maximal density
scaled to 1 is used to easily display each market’s distribution in one figure. The weights obtain from
estimation are used to weight the kernel estimator.

(µωξ ).

The modal mean flight valuation for leisure travelers is around $78 with a mean of $105.62

compared to a mode of around $144 and mean of $184.48 for business travelers. The average

value of δBν is 0.823, which means that business travelers value flights 82.3% more than

leisure travelers, on average. Furthermore, the distribution of means for leisure travelers is

more concentrated around the mode, whereas the distribution for business travelers is more

varied. The distribution of the mean quality multiplier for leisure travelers has a mode of

1.06 and mean of 1.37, with the probability mass dropping quickly toward zero when moving

away from 1. However, the modal mean quality multiplier for business travelers is around

1.32 with a mean of 1.93, and the probability mass is more equally distributed compared

to the leisure distribution. The mean value of δBξ is 0.566, meaning that business travelers

value the premium cabin 55.6% more than leisure travelers. This suggests that most leisure

travelers have very low willingness-to-pay for quality, and there is much more heterogeneity

in the willingness-to-pay for quality among business travelers.

All together, business travelers have larger and more varied distributions for both prefer-

ence parameters. While this is to be expected as we assume first-order stochastic dominance
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Figure 10: Estimated Marginal Distributions of Demand Parameters

(a) Mean Willingness-To-Pay for Flight (b) Mean Quality Multiplier

Notes: The probability of a candidate type is the total probability of that type across all markets. These
are histograms where the probability of a type is used as a weight when creating the figures.

for the business traveler distributions by imposing µLν ≤ µBν and µLξ ≤ µBξ during estimation,

the clear separation between both types in each distribution highlights the importance of

capturing the mixture of higher and lower valuation consumers. This produces the trade-off

the airline faces: keeping enough premium seats to sell to high-value consumers while using

upgrades to reallocate capacity and collect upgrade revenue if not enough premium seats

have been purchased.

Figure 11 shows the joint distribution of the estimated parameters by leisure travelers

and business travelers, respectively. These figures further highlight that the distribution

of parameters for leisure travelers is smaller and much less varied than that of business

travelers. There is a negative correlation between µων and µωξ and the candidate types in

the top right quadrant receive very little weight for both leisure and business travelers even

though regions have plenty of candidate types in those regions (see Appendix D.3). There is

also significant overlap in the scaled points meaning that nearby points get relatively different

weight. This is likely due to market heterogeneity as different types may be more prevalent

in some markets and not others, emphasizing the importance of performing estimation at

the market level to capture this heterogeneity. This is supported by Figure 12, which shows

box plots for the distribution of average parameter estimates within each market. There

is substantial heterogeneity across markets, and the distribution of parameters for business
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Figure 11: Estimated Joint Distributions of Demand Parameters

(a) Joint Distribution: Leisure (b) Joint Distribution: Business

Notes: A random sample of size 1,000,000 is drawn from the estimated joint distribution for each travel
type aggregated across markets. The points are scaled by the probability of that candidate type. The
points are semi-transparent in order to observe the density of overlapping points in a region.

travelers is more varied than that of leisure travelers for both types of parameters.

Table 3: Average Elasticities by Travel Type

Leisure Travelers Business Travelers

Premium Economy Premium Economy

Premium -17.857 12.285 -4.389 2.095
Economy 3.371 -6.672 3.166 -4.827

No Purchase 0.032 0.270 0.155 0.349

Market Share 0.013 0.070 0.129 0.142

Overall Elasticity -3.497 -1.588

Notes: Each elasticity ηjk is read as the percent change in quantity demanded of j given a 1% increase in
price k where j is the row and k is the column. The market share is the probability of purchase. To
calculate the overall price elasticity demand for both premium and economy, define sk|M = sk

sf+se
to be the

market share of k conditional on being in the market. The overall elasticity in the market εM can be
calculated using εM = sf |M (εff + εfe) + se|M (εee + εef ).

To better understand the overall demand curve, we calculate the matrix of price elastici-

ties for business and leisure travelers. For simplicity, we obtain the average transacted price
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Figure 12: Heterogeneity in Average Parameters by Market

(a) Mean Willingness-To-Pay for Flight (b) Mean Quality Multiplier

Notes: Each box plot is composed of thirty points where each point is the average parameter estimate for
each of the thirty markets.

by cabin in each DGP and simulate choices in the model without the capacity constraint,

seat release polices, or upgrades. The resulting elasticities are in Table 3.

The economy and premium price elasticities of leisure travelers are, respectively, −6.672

and −17.857 compared to the price elasticities of business travelers of −4.827 and −4.389. As

business travelers have higher valuations for quality and are responsible for a disproportionate

share of premium purchases, it is unsurprising that they are much less price sensitive to the

price of premium when compared to leisure travelers who are extremely price sensitive. The

overall elasticities for leisure and business travelers are −3.497 and −1.588, respectively.

Qualitatively, these match the elasticities in Aryal et al. [2023] and Berry and Jia [2010]

with leisure travelers having rather elastic demand and business travelers having less elastic

demand. While the overall elasticity for leisure travelers is very similar to Aryal et al. [2023],

the overall elasticity for business travelers is quite different. The difference between the

own price elasticities, cross price elasticities, and overall price elasticities also highlights that

business travelers are more likely to substitute to other options in the market when faced

with a price increase. Whereas, leisure travelers are mostly considering economy seats and

likely to leave the market when faced with a price increase. However, business travelers are

more likely to leave the market entirely when faced with an increase in price of premium
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as their cross-price elasticity to the outside option is 0.155 compared to 0.032 for leisure

travelers. This happens when preferences satisfy ξi ≥ pft /p
e
t as the consumer will always

prefer premium to economy no matter their νi.
29 While their mass is small, these types of

consumers do exist in reality and cannot be captured in models with only heterogeneity in

ν but not ξ [e.g. Mussa and Rosen, 1978, Gershkov and Moldovanu, 2009, Loertscher and

Muir, 2022].

5.2 Model Fit

To evaluate the fit of the model, we compare the estimated moments from the model to the

equivalent moments in the data. Overall, the model fits the data quite well and qualitatively

captures various features of the data. The mean absolute deviation across all markets is

0.1487. Figure 13a breaks down the mean absolute deviation by market. The market with

the best fit is market 7 with a mean absolute deviation of 0.121 and the market with the

worst fit is market 2 with a mean absolute deviation of 0.208.

Figure 13: Decomposition of Model Fit

(a) Market (b) Variable Groups

Notes: In a, the absolute difference between data and model moments are averaged across all 15,400
moments by market. For b, the groups on the y-axis are groups of the moments discussed in Section 4.4
used to estimate the model.

29To see this, suppose pft /p
e
t ≤ ξi or pft ≤ petξi ⇐⇒ −pft ≥ −petξi ⇐⇒ νiξi−pft ≥ νiξi−petξi = (νi−pet )ξi.

Because ξi ≥ 1, we have νiξi − pft ≥ νi − pet , which means f % e. So a passenger with ξi ≥ pft /pet will always
prefer premium to economy no matter the value of νi.

38



Table 4 compares selected summary statistics from the data discussed in Section 2.4 to

the equivalent statistics from the model. Overall, the model matches the data quite well

even though it misses a few statistics. The average fares are rather similar with model fares

being larger for economy and lower for premium. Similarly, the average submitted bid is

similar with the model producing average bids only $15 smaller that the data. The model

matches the average number of bids and accepted bids per flight as well as the probability

a bid is accepted. The upgrade probability is particularly noteworthy as it is not used in

estimation in any way.

Table 4: Model Fit of Descriptive Statistics

Statistic Data Model

Average Paid Economy Fare 199.35 241.13
Average Paid Premium Fare 462.74 668.28
Average Submitted Bid 221.14 202.25
Probability Bid Accepted 0.447 0.429
Average Check-In Upgrades Per Flight 1.88 0.12
Average Bids Per Flight 1.57 3.81
Average Accepted Bids Per Flight 0.72 0.72
Average Economy Departure Load Factor 0.805 0.993
Average Premium Departure Load Factor 0.806 0.984

Notes: The above statistics from the data are identical to those from Section 2.4 in Table 1 and Table 2.
The equivalent statistics are computed in each model solution and averaged across solutions using the joint
probability of that flight type and market. This is obtained by multiply the estimated flight type weight
within a market with the probability of that market.

5.3 Counterfactuals

The estimated structural model allows us to run various counterfactuals to examine the

implications changing the design of the allocation mechanisms on profits and consumer

surplus. The complexity of the environment leads to little intuition from economic theory

for the optimal design of these auctions. Furthermore, because the dynamic pricing and

upgrade mechanisms are not integrated, it is not clear how integration would affect profits

and consumer surplus. We chose counterfactuals that would illuminate how to optimally

award upgrades in this environment. The total welfare achieved in each counterfactual is

compared to the first-best welfare from allocating seats to those with the highest values of

(ν, ξ) regardless of arrival.30

30See Appendix E to see a formal description of how we calculate first-best welfare.
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Upgrade Mechanisms Introduction Simulation. The first counterfactual mimics the

introduction of both upgrade mechanisms by simulating the model with and without the

upgrade mechanisms present. The upgrade mechanisms are removed by setting all beliefs

to zero. Comparing the outcomes with and without the upgrade mechanism simulates what

happened after the airline introduced both upgrade mechanisms.

Figure 14 shows the change in flight profits and consumer surplus at the flight type and

market levels. Consumers almost always benefit with consumer surplus increasing 98.1% of

the time with an average increase of $89.33 whereas profits only increase 78% of the time with

an average decrease of $14.20. Figure 14a highlights that there are some specifications where

both consumer surplus and profits increase, happening about 74.7% of the time. However,

Figure 14b shows when flights are aggregated within a market, average profits decrease in

some markets and increase in others.

Total welfare increased 98.2% of the time with an average increase of $75.14. Dynamic

pricing alone achieves around 97.5% of the first-best welfare with profits and welfare achieving

76.0% and 10.4% of it, respectively. The introduction of the upgrades increased total welfare

to achieving 97.5% of the first best welfare, which is a decrease of 0.128%. After introduction,

profits decreased by 0.031% and consumer surplus increased by 0.711%.

To explore how the demand parameters affect the change in the split of surplus between

the airline and consumers from the upgrade introduction, we regress the change in profit

and consumer surplus on the model parameters with market fixed effects where the unit of

observation is each of the candidate DGPs. The results of these regressions are in Table 5.

The mean willingness-to-pay for travel parameters appear to have little impact on profits

or consumer surplus. DGPs where leisure travelers value quality more are associated with

higher profits but lower consumer surplus after the upgrades are introduced. A $1 increase

in the average willingness-to-pay for quality of leisure travelers is associated with an increase

in profits of $90.05 and decrease in consumer surplus of $137.45. While this effect size

might appear large, it is important to remember that this is an increase in the mean of an

exponential distribution. This effect is reversed for business travelers: an increase of $1 in

the average willingness to pay for quality is associated with an average decrease in profits

of $12.09 and an increase in consumer surplus of $92.97, though the effect on profit is not

statistically significant. An increase in the business probability increment is associated with

an increase in profit and decrease in consumer surplus. A one percentage point increase in

the increment increases profit by about $9 and decreases consumer surplus by $3.77, though

the effect on consumer surplus is not statistically significant.

Taken together, these counterfactual simulations suggest that upgrades increase profits

the most for flights where leisure and business travelers have more similar preferences for
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Table 5: Effect of Model Parameters on Surplus in Introduction Counterfactual

∆ Profit ∆ CS ∆ Profit ≥ 0 ∆ CS ≥ 0
(1) (2) (3) (4)

Variables
µLν -0.010 -0.497 0.000 0.000

(0.143) (0.242) (0.000) (0.000)
µLξ 90.053∗∗∗ -137.452∗∗∗ 0.382∗∗∗ 0.034∗

(21.088) (28.810) (0.060) (0.014)
µBν 0.134 0.524∗∗ 0.000 0.000

(0.081) (0.188) (0.000) (0.000)
µBξ -12.087 92.965∗∗∗ -0.198∗∗∗ 0.026∗

(12.021) (15.969) (0.044) (0.011)
∆γ 901.866∗∗∗ -377.764 1.165 -1.105∗

(242.882) (459.519) (1.150) (0.437)

Fixed-effects
Market Yes Yes Yes Yes

Fit statistics
Observations 38,748 38,748 38,748 38,748
R2 0.257 0.249 0.201 0.153
Within R2 0.199 0.148 0.105 0.078
Weighted Yes Yes Yes Yes

Clustered (Market) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: An observation is a market-specific DGP and is weighted using the estimated probability of that
DGP for its market.
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Figure 14: Change in Consumer Surplus and Profits from Upgrade Introduction

(a) Flight Type (b) Market Average

Notes: Points in a are the flight type change in profits and consumer surplus of the types that make up
99.99% of the weight for each market and points in b are the corresponding market averages. Points in a
are sized by their weight received from estimation. Points in b are sized by the market probability. All
points are colored by market.

quality and there are relatively more business travelers compared to leisure travelers. For

these flights, the airline would have a harder time using prices alone for screening because

business and leisure travelers have more similar preferences for quality. The upgrades give

the airline another mechanism for discriminating between business and leisure travelers.

Changing Slider Minimum and Auction Timing. In this counterfactual, we change

the timing of the auction as well as the minimum possible bid (i.e. the slider minimum)

to examine the effect of the slider minimum and auction timing on profits and consumer

surplus. Changing the auction timing is straightforward and only involves modifying t̃ and

resolving equilibrium beliefs. To change the slider minimum, shift all bids in the bid space

B up and down by the uniform bid increment used to create the bid space.

Allowing Bids to Influence Prices. The main counterfactual of interest is allowing the

airline to update their pricing policy given the presence of the auction. The model currently

assumes that the airline only upgrades consumers using their bids at time t̃ and does not

change its policy function from before the auction was introduced. This assumption is

motivated by the fact that our data from the airline reflects this behavior. However, in the
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absence of technology and implementation constraints, the airline would likely want to allow

the pricing and auction mechanisms to work together. The goal of this paper is to analyze

the difference in revenues and welfare when the airline can reoptimize prices to work with

the auction mechanism. In the next subsection, we lay out the notation for allowing the

auction and pricing mechanisms to work together given how the auction already works.

6 Conclusion

We study the introduction of mechanisms for allocating upgrades into the revenue-management

systems of airlines. Our model captures how strategic consumers and the siloed objectives

of the auction and dynamic-pricing groups within an airline can impact profitability. Con-

sistent the intuition and predictions from the model, we find that the introduction of an

upgrade auction leads to a small transfer of surplus from the airline to consumers with no

improvement in overall welfare.

In counterfactual calculations, we show that the introduction of upgrades always increases

consumer surplus and usually increases profits as well, although this is not guaranteed.

We find that the types of flights profits increase the most are flights with relatively more

business travelers with preferences for quality more similar to the leisure travelers. We

then demonstrate two potential ways in which reallocation can be improved through better

integration of upgrade and pricing policies with strategic consumers.

In a broader context, our work highlights the challenges inherent in outsourcing and

automation of decisions to third-party vendors. High among these challenges is ensuring

that these algorithmic decision-makers complement rather than compete with one another.

In our setting, the auction’s objective of making the most from unfortunate circumstances

undermines the screening intention of the dynamic-pricing practices and makes those unfor-

tunate circumstances more likely. By not accounting for this loss, the auction appears to

perform admirably by collecting meaningful bid revenue in adverse demand conditions that

actually arise due to the response of strategic consumers.

Our paper leaves a number of issues to be addressed in future research. While we provide

a framework for studying reallocative mechanisms in a monopolistic setting, consistent with

the setting in our empirical application, competition may alter some of our implications and

conclusions. Computational limits also place bounds on how strategic consumers are in their

decision-making in our model. Equilibrium bidding accounts for dynamic selection into the

auction, but we do not allow consumers to delay their purchase. Given that airline prices

are expected to increase approaching departure due to a changing composition of demand,

this is likely less of a problem in our application but may be in other settings. Finally, as
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regulatory and policy concerns grow over more sophisticated discriminatory strategies by

firms, a fruitful area for future research will be understanding whether factors like strategic

consumers and competition can mitigate any harm or policy and regulatory intervention is

necessary.
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Appendices

A Sample Selection Descriptives

The sample selection process results in 27 markets and 4,783 flights used for estimation.

Figure A.1 shows the number of flights in each of the 27 markets, with market indexes

assigned based on the number of flights in the sample. Markets 1 and 2 have significantly

more flights than the other 25 markets, with most having around 100 flights.

Figure A.1: Number of Flights in Sample by Market

Notes: The number of flights in the sample for each market.

The flight network of selected markets is shown in Figure A.2. The requirement that

markets must have at least one airport that enplanes and receives passengers from only

one other airport results in three disconnected hub-and-spoke networks. The networks are

sorted from left to right in descending order by the number of markets in that network.

Although the right-most network has the fewest markets, the flight distance these markets

is significantly further than the other two.

As we model our airline as a monopolist, the level of competition in each market could

affect our model’s ability to match the data and external validity of our estimates. We

validate our selection of markets using OAG data to calculate the Herfindahl–Hirschman
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Figure A.2: Network of Selected Markets

Notes: Nodes represent airports and edges represent segments flown by the airline. The size of the nodes
are scaled by how many passengers travel through that airport during the sample. The edges are colored
by the flight distance between the airports in miles.

index (HHI) of each market. To do this, we take all economic markets (origin and final

destination pairs) flown by our airline and count the number of passengers by airline who

traveled along each of our market segments, regardless of whether the flight was direct or

connecting.31 We then calculate the (conditional) market share for a segment by dividing

the total number of passengers along that segment by airline and dividing that by the total

across all airlines. From there, the HHI is calculated the standard way: summing up the

squared market shares for each airline and multiply the result by 10,000.

Figure A.3 shows the resulting HHI in each of the selected markets. Our airline is an

effective monopolistic in 8 of the markets, and we mention here that it is the dominant

airline in 15 of the 27 markets. In the remaining 12 markets, our airline is the second

most dominant player with market shares ranging from 20%-45%. As all of the markets

are above the standard threshold of 2,000, we consider each of the selected markets to be

highly concentrated. This lessens any concerns about competition affecting our estimates

and model a monopoly airline.

31It is worth mentioning one limitation to this approach; we do not observe connecting passengers flying
a selected segment with another airline to a final destination our airline does not service. This choice was
made to reduce the amount of data needed from OAG to make these calculations.
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Figure A.3: Levels of Market Concentration in Selected Markets

Notes: The dashed vertical line indicates an HHI of 2,000, the common threshold where markets with an
HHI exceeding the threshold are considered highly concentrated.

B Additional Model Definitions

In this section of the appendix, we formally define objects not defined in Section 3 for ease

of exposition.

Upgrade Value. Let It be the airline’s information set at time t. As well, let ET+1 be the

indices of those who have an economy seat at the beginning of the check-in period. Lastly,

let Nu
T+1(r) be the random variable for the number of economy passengers at the beginning

of the check-in period willing to upgrade at fee r. Then the check-in value of k at t, denoted

Ut(k), is r multiplied by the expected number of economy passengers willing to pay check-in

fee r conditional on the airline’s information set at t, i.e.

Ut(k) = rEt[Nu
T+1(r)] = rE[Nu

T+1(r)|It]

= r

kft∑
k=0

k × Pr
( ∑
i∈ ET+1

1[νi(ξi − 1) ≥ r] = k|It
)
.

(10)

Auction Upgrades With Non-Monotonic Marginal Costs. If ∆TVt(n,k) is not in-
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creasing in n, then the stopping condition in Equation 7 is not guaranteed to result in the

optimal number of auction upgrades. Instead, the optimal auction upgrades nu
t̃
(k, b) can be

found by solving

nut̃ (k, b) = arg max
n∈{0,1,...,kf}

n∑
l=0

b(l) − (TVt(k + niu)− TVt(k)), (11)

where b(l) is the lth highest bid in b and kf is the number of remaining premium seats. The

intuition is that for n upgrades,
∑n

l=0 b
(l) is the total revenue and TVt(k + niu)− TVt(k) is

the total cost.

C Solving Equilibrium Beliefs

The most difficult aspect of solving the model is computing equilibrium beliefs %t(k) and

ϕt(k). This section of the appendix explains the details of how we do it. Section C.1 explains

how we compute beliefs for bid types not placed within a single simulated demand path, and

Section C.3 explains the details of how we implement our iterative procedure to solve for

equilibrium beliefs.

C.1 Computing Beliefs for Bid Types Not Placed in a Simulation

If a bid type is not placed within a simulation (i.e. b
j

t̃
= 0 for some bj ∈ B), the probability

Pr(bj ∈ bat̃ |kt̃, bt̃) in Equation 13 is not well defined. In order to update beliefs, we must

compute these probabilities for bid types not placed. We do this by allowing passengers

to lower their bid if it does not risk altering the allocation and by using information from

the airline’s total value function TVt̃(k) to inform passengers what the airline would have

accepted. This results in three cases.

Let simulation r have bid portfolio br
t̃

and remaining capacity krt̃ at the time of the

auction, and the airline accepted nu
t̃
(kr, br) bids with bat̃ being the set of accepted bids.

Suppose b
j

t̃
= 0 for some bj ∈ B.

1. Bid types not placed but either large enough for the airline to accept given the simu-

lation’s bt̃ and kt̃ or larger than a bid type that was placed and accepted. Beliefs for

these bid types are set to 1.

2. Bid types not placed but would unambiguously be rejected given the simulation’s bt̃

and kt̃. Beliefs for these bid types are set to 0.
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3. Bid types not placed but acceptance is contingent upon which consumers change their

bids. To compute these beliefs, we find the closest bid type that was accepted and

larger than the bid type whose belief is being computed. We allow one bidder who

placed this larger bid type to decrease her bid until it is no longer accepted or the next

smallest bid type was a type placed in the simulation. Beliefs are set to 1 for all bid

types that were accepted by lowering the bid and 0 for the first bid type rejected and

all smaller bid types.

These steps are motivated by the notion of Nash Equilibrium as they allow consumers to

change their bid if profitable deviations exist as long as doing so does not risk changing their

allocation nor their ranking among the other consumers. That is, consumers will increase

their bid if doing so results in strictly higher Ue
it and will decrease their bid to not leave

money on the table as long as doing so does not put them among consumers who previously

placed lower bids. Lowering a bid increases expected utility if it does decrease the probability

of winning. Furthermore, bids should not be lowered too much if the optimal bid is no longer

weakly increasing in a consumer’s valuation (the gross utility of the upgrade). This guides

consumer behavior towards Nash Equilibrium and forces the equilibrium bids at a state to

be increasing in the valuation, a common assumption in bidding models.

The steps in the procedure guide consumers to their optimal choice in equilibrium even if

the current beliefs are far from their equilibrium values. Step (1) encourages those who were

already buying economy to increase their bid, allowing beliefs to be more optimistic if they

were previously too pessimistic. Conversely, (2) sets beliefs to zero for bid types that have

no chance of winning given how consumers are currently behaving. This removes some of the

option value associated with an economy ticket by lowering Ue
it and encourages those who

really value premium to buy it outright. Lastly, (3) moves successful bidders towards lower

bid types without the risk of losing the upgrade, increasing their value of Ue
it. Each step

guides consumers towards their optimal bid given current behavior of other consumers. This

moves beliefs towards their equilibrium values and reduces the chance of multiple equilibria

(see the last paragraph of the next section, C.3).

C.2 Components of Beliefs

To understand our procedure for solving equilibrium bidding beliefs, first note that the belief

for bid type j, %jt(k) = Pr(bj ∈ bat̃ |kt), can be decomposed using the Law of Total Probability
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by expected over all possible auction states kt̃ and bt̃,

%jt(k) = Pr(bj ∈ bat̃ |kt) =
∑

(kt̃, bt̃) ∈ K×B

Pr(bj ∈ bat̃ |kt,kt̃, bt̃) Pr(kt̃, bt̃|kt) (12)

=
∑

(kt̃, bt̃) ∈ K×B

Pr(bj ∈ bat̃ |kt̃, bt̃) Pr(kt̃, bt̃|kt). (13)

The step between 12 to 13 is from the fact that the optimal bids for the airline to accept

are not affected by the path for how the airline found itself in state kt̃ with bid portfolio bt̃

before the auction. That is, only kt̃ and bt̃ affect the airline’s upgrade decisions.

Pr(bj ∈ bat̃ |kt̃, bt̃) is the probability the airline upgrades a bid of size j given a realized

capacity state kt̃ and bid portfolio bt̃ at the auction. Barring pivotal ties which are broken

randomly, this probability will be either 0 or 1 as the upgrade process is deterministic once

kt̃ and bt̃ are fixed. If there are more bids of type j than the airline is willing to accept,

the probability will be the number of bids of type j the airline accepts divided by the total

number of bids of type j. Pr(kt̃, bt̃|kt) is the probability of observing state kt̃ and bid

portfolio bt̃ when the auction occurs given that a consumer arrived in state kt. Put simply,

it is the joint distribution of bid portfolios and remaining capacities at the time of the auction

given arriving in state kt.

To better understand Equation 13, consider how kt̃ and bt̃ affect the probability of an

upgrade from the auction. kt̃ determines the marginal upgrade opportunity cost curve

∆TVt̃(n,k) from Equation 6 which the airline uses to select which bids to upgrade. If there

are relatively more premium seats remaining than expected, the marginal opportunity cost

of an upgrade will be lower and the airline is more likely to accept smaller bids. However,

smaller bids may be rejected if bt̃ contains larger bids. That is, bt̃ affects the competitiveness

of the auction. Figure 7 shows how both k and b evolve over time and influence the beliefs

of a consumer in state kt. Consumers arriving in period t = t̃ − 1 (the period before the

auction) observe remaining capacities k but do not observe b. Because consumers do not

observe b, they must consider the distribution of bt conditional on observing the state kt.

Furthermore, consumers must consider the purchase decisions and submitted bids in period

t̃ − 1 because they affect how k and b evolve into the next period when auction occurs.

Therefore, in order for consumers to form %t(k), they must integrate over the distribution

of bt as well as the distributions of kt̃ and bt̃ conditional on observing state kt

We use simulations to approximate each probability in Equation 13. Pr(kt̃, bt̃|kt) can be

easily approximated using the frequency of simulated outcomes. Pr(bj ∈ bat̃ |kt̃, bt̃) is a bit

trickier. For bid types placed within a simulation, the corresponding conditional probability

is simply the probability that bid type is upgraded in a given simulation. However, not every
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bid type is guaranteed to be placed within a simulation. We compute Pr(bj ∈ bat̃ |kt̃, bt̃) for

bid types not placed within a simulation by using the airline’s value function and allowing

bidders to decrease their bids as long doing so does not risk altering the allocation. The

details of this procedure are outlined in Appendix C.1. Even though Pr(bj ∈ bat̃ |kt̃, bt̃)
and Pr(kt̃, bt̃|kt) are equilibrium objects that depend upon current beliefs, this procedure

guides consumers towards their optimal bids even when the current beliefs are far from their

equilibrium values.

The process for updating the check-in beliefs ϕt(k) is similar but easier than that of

%t(k). We also use a frequency simulator to compute Pr(kfTai > 0|kt). For each simulated

path through kt, divide the number of remaining premium seats at the beginning of period

T + 1 by the number of the economy passengers willing to pay that upgrade fee to get the

check-in probability for that simulation. Because airport arrival times T ai are independent

across passengers, the probability of receiving an upgrade conditional on kt is simply the

number of seats remaining at the beginning of periods T + 1 divided by the number of

consumers willing to pay the check-in fee. Consumers awarded an upgrade through the

auction are removed from the count if they were willing to pay the check-in fee. The average

of check-in probabilities across all simulations through kt is the updated value of ϕt(k).

As described above, the algorithm to calculate equilibrium beliefs is as follows32:

1. Initialize ϕ0
t (k;ψ) and %0

t (k;ψ) to equal zero at every state.33

2. Given ϕ0
t (k;ψ), %0

t (k;ψ), and the pricing policy pt(k;ψ) and initial capacity of (kf1 , k
e
1),

simulate R paths for the demand DGP.

3. ∀kt ∈K × TT , compute Pr(bj ∈ bat̃ |kt̃, bt̃), Pr(kt̃, bt̃|kt), and Pr(kfTai > 0|kt) using all

simulated paths through kt and update beliefs to ϕ1
t (k) and %1

t (k).

(a) If no paths go through kt, beliefs are not updated.

(b) If t > t̃, %1
t (k) = 0 because the auction has already been run.

4. Continue alternating between steps 2 and 3 while updating beliefs from ϕlt(k) to ϕl+1
t (k)

and %lt(k) to %l+1
t (k) until convergence.

The details of each step and our implementation can be found in Appendix C.3.

32For additional details, see Appendix C.3
33We explore a wide set of alternative initial values that result in the same equilibrium beliefs.
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C.3 Implementation Details of Procedure to Solve Beliefs

For an initial guess of beliefs %0
t (k) and ϕ0

t (k), we forward simulate the model and obtain

updated beliefs %1
t (k) and ϕ1

t (k) as described in Section 4.2. Because the procedure for

updating the beliefs is not guaranteed to be a contraction mapping, we use dampening as

described in Judd [1998] to ensure the beliefs are not updated too quickly. Let δ ∈ (0, 1]

be the dampening parameter. The new, dampened beliefs are then a convex combination of

the initial and updated beliefs i.e. %1,δ
t (k) = δ%1

t (k) + (1− δ)%0
t (k) and ϕ1,δ

t (k) = δϕ1
t (k) +

(1 − δ)ϕ0
t (k). The dampening parameter δ can be thought of as the share that the fully

updated beliefs contribute to the dampened beliefs, with no dampening when δ = 1. These

dampened beliefs, %1,δ
t (k) and ϕ1,δ

t (k), are used to forward simulate the model again. We

continue alternating between forward simulation and obtaining new, dampened beliefs until

max{d(%l+1,%l,δ), d(ϕl+1, ϕl,δ)} < ε where d : X ×X −→ R+ is a distance metric between

two vectors of beliefs for every point in the state space Ω and ε is a stopping tolerance. After

terminating, %l+1
t (k) and ϕl+1

t (k) are the equilibrium beliefs i.e. these are the beliefs from

the final update and are not dampened.

To implement this procedure, we need values for %0
t (k), ϕ0

t (k), δ, and ε as well as a

distance metric d. We set δ = 0.1, ε = 0.0075, and %0
t (k) = 0, ϕ0

t (k) = 0, ∀kt ∈ K × Tτ

where τ is the last time period where the beliefs are relevant.34 The distance metric we use is

a “weighted mean absolute deviation” metric. To explain this metric, we need a little more

notation. Let K l,R
t be a set of ordered pairs (kt, r) of states reached during iteration l with

R simulations and the simulation index r ∈ {1, ..., R} in which kt was reached. N(kt,K
l,R
t )

is the number of times kt appears in K l,R
t . Lastly, let x : Ω −→ [0, 1]J and y : Ω −→ [0, 1]J

be functions that map all points in the state space Ω = K × Tτ to a belief vector with J

probabilities.35 Then the weighted mean absolute deviation d(x,y) between belief vectors x

and y is defined as

d(x,y) =
∑

kt∈K×Tτ

N(kt,K
l,R
t )

R× |Tτ | × J
∣∣∣∣xt(k)− yt(k)

∣∣∣∣
1

(14)

where ||xt(k)− yt(k)||1 is the l-1 norm and |Tτ | is the size of set Tτ .

We weight the l-1 norm by how many simulations reach state kt because we are using

a frequency simulator to approximate the probabilities that form consumer beliefs. Devi-

ations maybe be large when only a small number of simulations reach a state because the

34τ = t̃− 1 for the auction beliefs, and τ = T for the check-in beliefs.
35If xt(k) = ϕt(k), then J = 1. If xt(k) = %t(k), then J = |B| i.e. the number of bids in the bid space.
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approximated probabilities will be noisy.36 This metric will give less weight to deviations

from noisier approximates and more weight to deviations in states that are reached with

higher frequency. Note that states not reached within a simulation will not affect the metric

as defined in Equation 14. This is ideal because deviations will be zero for states not reached

as beliefs are not updated as described in Section 4.2, but these null deviations are not infor-

mative of convergence. The distant metric has a nice interpretation, that being the distance

between x and y is the average absolute deviation between all the probabilities in the two

belief vectors where the average is weighted by how often a state occurs in a simulation.

Figure C.1: Equilibrium Beliefs for the Average Market in the First Period with Different
Initial Guesses

Notes: The equilibrium beliefs displayed are for all consumers arriving in the first period who all face the
same state i.e. no seats sold. Two different guesses of initial beliefs are used: all zeros and linearly
increasing beliefs between 0 and 1.

Lastly, we use initial beliefs of all zeros because this mimics an environment with only

prices and no upgrades. Because we cannot guarantee that the updating procedure forms

a contraction mapping, there may be multiple equilibria which makes the choice of beliefs

important. First, the updating procedure guides consumers away from equilibria supported

36To see this, consider the approximated probability if only one simulation reaches a state.
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by self-fulling beliefs e.g. without the use of the airline’s upgrade policy function to inform

consumers what bid types the airline would have accepted, initial beliefs of all zeros would

result in no bidding and the implied upgrade probabilities would also be zero. Second, to

examine how much of a concern the initial guess of beliefs is, we solve equilibrium beliefs for

the average market used to calculate the elasticities in Section 5 with two different initial

guesses of beliefs. The first guess being all zeros and the second being linearly increasing

beliefs where the belief of the lowest bid is 0 and the belief of the largest bid is 1. The

resulting beliefs in the first period (where all consumers arrive in the same state) can be seen

in Figure C.1. Although these equilibrium beliefs do differ from those with initial beliefs of

all zero, this is likely due to simulation error because the resulting behavior of consumers is

virtually identical. This eases concerns over multiple equilibria.

D Estimation Details

D.1 Check-In Fee and Slider Features

Because the airline uses third-party software to run the auction, we do not know exactly

how the slider minimum and maximum are set for a flight. Conversations with the airline

suggested that the slider features were roughly based on the check-in fee for that flight.

Furthermore, we are not entirely certain how the check-in fee is set. To better understand

the relationship between the check-in fee and the slider features, we take the difference in

median transacted fares across cabins (i.e. fare gap) along with the modal check-in fee and

median slider features for flights where both are observed and analyze the relationship.

Figure D.1a suggests that the check-in fee is strongly clustered within a market but not

affected by a flight’s fare gap, conditional on the market. Figure D.1a suggests this is the

same with the slider minimum and flight fare gap. However, Figures D.1c and D.1d suggest

that the slider minimum and maximum are highly dependent on the check-in fee with strong

clustering within a market. Contrasting the top two panels of Figure D.1 with the bottom

two highlights how the slider features depend on the check-in fee which is set at the market

level.

Table D.1 supports these findings. Column 1 shows that a market-specific intercept

explains 97.5% of the variation in the check-in fee, and Column 2 shows that the check-in

fee is not affected by the fare gap conditional on a market. Columns 3 and 4 shows that a $1

increase in the check-in fee results in a $0.75 and $1.32 increase in the slider minimum and

maximum, respectively. If the regression line does not include an intercept, these coefficients

because $0.75 and $1.52, respectively.

59



Figure D.1: Relationship Between Fare Gap, Check-In Fee, and Slider Features

(a) Check-In Fee By Fare Gap (b) Slider Minimum By Fare Gap

(c) Slider Minimum (d) Slider Maximum

Notes: The gray dashed line is the 45 degree line and the solid line is the line of best fit. Points are colored
by market, and a “jitter” transformation has been applied to the points which adds random noise vertically
and horizontally so that points on top of each other are moved slightly.

60



Table D.1: Check-In Fee and Slider Features Regressions

Check-In Fee Slider Min Slider Max Slider Min Slider Max

(1) (2) (3) (4) (5) (6)

Variables
Fare Gap -0.001

(0.006)
Constant -0.113 51.639

(11.495) (36.557)
Check-In Fee 0.750∗∗∗ 1.323∗∗∗ 0.750∗∗∗ 1.520∗∗∗

(0.060) (0.139) (0.036) (0.106)

Fixed-effects
Market Yes Yes No No No No

Fit statistics
Observations 1,231 1,231 1,231 1,231 1,231 1,231
R2 0.975 0.975 0.889 0.809 0.889 0.779

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: The sample for these regressions includes a flight’s median fare gap, slider
minimum, and slider maximum along with the modal check-in fee. The sample is restricted
to flights where both the check-in fee and slider features are observed.

With this evidence, we set the check-in fee in the model to be fixed within a market and

use the market modal check-in fee observed in the data. We then set the slider minimum

and maximum by multiplying the market-specific check-in fee by 0.75 and 1.5, respectively.

D.2 Arrival Process

To estimate λt, we use the search data to estimate an average daily booking rate in each

market approaching departure. To do this, we smooth the number of bookings and searches

using a Gaussian kernel with the rule-of-thumb bandwidth and take the ratio of smoothed

bookings to searches. We then smooth the number of bookings in the inventory data in

the same manner. Because the search data covers a different sample period than the rest

of the data, we make the assumption that the average daily booking rate in each market is

the same in the two periods in order to recover the implied λt by dividing the average daily

bookings by the average daily booking rate in each market.
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D.3 Grid of Candidate Types of Flights

To help visualize the grid of candidate types, Figure D.2 plots the 1,500 candidate types for

each type of traveler. The top two panels plots the parameter values used for estimating the

model whereas the bottom two panels transform each grid point used for estimation back

into the primitive demand parameters of the model.37

The grid of candidate types used for estimation appears to cover the type space sufficiently

well. However, Figure D.2d shows the top and bottom right-hand corners of the parameter

space of business travelers is more sparsely covered. This is unlikely affect our results.

Demand parameters in the bottom right-hand corner would produce flights with business

travelers who have large average willingness-to-pay for the travel but not the quality. As the

willingness-to-pay for travel is likely strongly correlated with the distance of the flight, which

also makes the premium cabin more desirable, it is unlikely this region will produce DGPs

with flights that match the real data. Similarly, demand parameters in the top right-hand

corner would produce DGPs with flights where business travelers have preferences much

larger than what is observed in our data. This implies that neither region would receive

much weight in estimation, which is supported by our estimation results as the maximum

value of δBµ as well as the minimum and maximum values of δBξ receive little weight.

D.3.1 Calculating Market Probabilities

It is often useful to aggregate results across markets. We do by forming the probability

a consumer arrives to purchase a seat for a flight in a given market. Because the arrival

process is exogenous, the probability of a market is simply the total number of expected

arrivals across all flights in that market divided by the total number of expected arrivals

across flights in all markets. If λmt is the expected number of arrivals in market m at time

t, the probability of a market can be expressed as

Pr(i ∈ m) =
N f
m ×

∑T
t=1 λmt∑M

m′=1N
f
m′ ×

∑T
t=1 λm′t

, (15)

where Pr(i ∈ m) is the probability a consumer arrives to market m to purchase a flight and

N f
m is the number of flights in market m. The estimated market arrival process Λm and the

number of flights in the data can be used to estimate the above probabilities.

37To clarify, it is helpful to remember that µLξ = 1 + δLξ , µBν = µLν × (1 + δBν ), and µBξ = µLξ + δBξ . Figure

D.2a plots (µLν , δ
L
ν ) whereas Figure D.2c plots (µLν , µ

L
ξ ). Similarly, Figure D.2b plots (δBν , δ

B
ξ ) and Figure

D.2d plots (µBν , µ
B
ξ ).
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Figure D.2: Visualizing Grid of Parameters for Candidate DGPs

(a) Leisure Traveler Parameters (b) Business Traveler Parameters

(c) Demand Parameters:
Leisure Travelers

(d) Demand Parameters:
Business Travelers

Notes : The above figure helps visualize the parameter grid used for estimation. Panels (a)
and (b) plot the values of the parameters for all points in the grid, grouped by type of
traveler. Panels (c) and (d) plot the business traveler parameters against the values of the
business probability increment.
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E Welfare Benchmark Models

Let N =
∑T

t=1Nt be the total number of arrivals and the vectors νf = (ν1ξ1, ..., νNξN)′,

νe = (ν1, ..., νN)′ be the corresponding gross utilities for the premium and economy cabins

for all arriving passengers. Similarly, let qf = (qf1 , ..., q
f
N) and qe = (qe1, ..., q

e
N) be the

allocations of seats in the premium and economy cabins where qji ∈ [0, 1] is the probability

that consumer i is allocated a seat in cabin j.

E.1 The Social Planner’s Problem with Perfect Foresight

A social planner with perfect foresight can allocate seats in such a way that maximizes social

welfare conditional upon those who arrived and their preferences. The efficient allocation un-

der a deterministic allocation rule resulting in optimal social welfare W ∗ solves the following

integer linear program,

W ∗ = E
[

max
qf ,qe

νf · qf + νe · qe
]

subject to qfi ∈ {0, 1}, qei ∈ {0, 1}, q
f
i + qei ≤ 1, ∀i ∈ {1, ..., N}

N∑
i=1

qfi ≤ kf1 , and
N∑
i=1

qei ≤ ke1.

(16)

Because the solution to Equation 16 only requires model primates, W ∗ can easily be calcu-

lated using simulation.
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