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Abstract

We study the allocation of premium-cabin upgrades through auctions and fixed-
price sales at check-in. Our data comes from a major airline and includes information
on ticket sales, aircraft inventory, and upgrade purchases and bids, before and after the
introduction of the upgrade mechanisms. We use a model to identify challenges and
trade-offs associated with these practices and highlight factors that can impact their
effectiveness. As implemented, we find that these practices lead to a minimal increase
in revenue because upgrade opportunities largely cannibalize outright premium-cabin
sales. We show that information dissemination and framing offer meaningful oppor-
tunities to improve performance, and discuss how to avoid cannibalization through
improved integration with existing revenue-management systems.
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1 Introduction

Firms use a variety of strategies to allocate differentiated products to consumers with het-

erogeneous preferences. Increasingly often, firms employ sophisticated hybrid approaches

that combine different strategies to further their profit-maximization objective by segment-

ing consumers based on preferences. The benefit of such approaches is not always ex-ante

obvious, because it depends on the complementarity of the strategies in the particular setting

and details of the integration.

One setting where these hybrid approaches are commonly used is travel and leisure mar-

kets, where a fixed inventory of vertically-differentiated goods and services are sold to a

random number of sequentially arriving customers. In the case of air travel, airlines have

traditionally varied prices approaching departure and across aircraft cabins to discriminate

inter-temporally and screen passengers on their preference for quality. More recently, air-

lines have complemented these revenue-management practices with auctions and bundling.

For example, auctions and fixed-price sales are used to award seat upgrades and ancillary

services like checked bags are offered in bundles. In this paper, we study the impact of

the introduction of upgrade processes on consumer choice and profitability of the airline,

and provide insight into challenges to and opportunities for improving integration of these

strategies with existing revenue-management practices.

Our empirical analysis relies upon a novel 15-month panel of data from a large North

American airline that uses dynamic pricing to sell seats in economy and premium cabins.

At the beginning of the sample, the airline began offering upgrades during check-in at a

fixed market-specific price. Later in the sample, the airline gave customers that bought a

base economy fare the option to bid for an upgrade to the premium cabin with decisions on

acceptance made at a fixed date before departure. Bids were restricted to be among a set

of discrete values on a slider between a minimum and maximum, and the customer could

choose their bid by adjusting the slider from an initial position. No changes were made

to the revenue-management system during this time, and the upgrade systems operated

independently. Our sample includes information on every ticket purchase, daily aircraft

inventory for each flight leading up to departure, and information on upgrade check-in sales

and bidding. Additionally, we know the timing of practices introduced by the airline to raise

awareness of the upgrade opportunities to customers (e.g., sending emails prior to check-in).

To provide insights into the trade-offs associated with this particular hybrid approach and

guide our empirical analysis, we introduce and discuss the modeling framework from Marsh

et al. [2024]. The model includes an airline that uses dynamic pricing to sell seats in two

vertically-differentiated cabins before a fixed departure date, and equilibrium behavior among
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strategic consumers that account for upgrade opportunities during purchasing decisions.

The model offers predictions regarding the impact on profits and consumer behavior from

the introduction of upgrade procedures that we can compare to the observed outcomes. For

example, the option to purchase or bid for an upgrade can diminish the effectiveness of prices

for screening customers between the economy and premium cabins, resulting in an ambiguous

impact on profit. The model also has more nuanced predictions regarding consumer behavior,

like the role that dynamic pricing has in driving selection into the upgrade processes that

can help guide efforts to improve integration. Further, we’re able to identify behaviors of

consumers that are not captured by the model but can have important consequences for

profitability and can help enrich future modeling efforts.

REFRESH WITH RESULTS: We begin by documenting the changes to consumer be-

havior from the introduction of the upgrade processes. We find that prior to the auction

being introduced, i.e., first 6 months of our sample, on average XX% of the premium cabin

was occupied and approximately XX% of those passengers purchased an upgrade at check-in.

The premium cabin was more than 80% occupied at departure for XX% of flights, which mo-

tivated many consumers to purchase outright rather than risk not being able to purchase an

upgrade at check-in. The total price paid by passengers that bought premium outright was

approximately XX% greater than those that upgraded (i.e., economy price plus check-in up-

grade fee). Upon the introduction of the auction, we find that the fraction of premium seats

that are occupied increases from XX% to XX%. Of these passengers, XX% were awarded an

upgrade through the auction, XX% bought an upgrade at check-in, and XX% bought pre-

mium outright. Thus, the auction largely served to displace upgrade purchases at check-in.

However, the average accepted bid is approximately XX% greater than the check-in price,

which is consistent with the competitive nature of the auction increasing revenue.

REFRESH WITH RESULTS: The patterns in consumers bidding and the airline’s ac-

ceptance of bids are consistent with predictions from the model. Overall, the airline is more

likely to accept a bid if fewer premium seats are occupied at the time of the auction. How-

ever, the probability of winning is not monotonically increasing in the value of a bid within

a market. A greater bid value is more attractive to the airline, but those bids tend to be

placed when the difference between premium and economy fares is largest due to a small

number of premium seats remaining. This selection into bidding due to the fluctuations in

the dynamically set prices drives the non-monotonicity in win probabilities.

REFRESH WITH RESULTS: Taken together, these changes in consumer behavior make

the profit implications theoretically ambiguous for airlines. Selection into the upgrade process

when premium prices are greatest works against any increase in premium-seat occupancy.

The impact on revenue from economy seat sales is also unclear. The direct effect of upgrades
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is negative, i.e., a seat is now empty in the economy cabin, but the option value associated

with the upgrade process could increase economy purchases. To identify the impact of

the introduction of the upgrade auction, we run a series of within-market regressions to

measure how load factors and revenue changed in each cabin and overall. We find that

premium revenue and load factor increased by XX% and XX%, respectively, while total

revenue increased by XX%. Thus, the upgrade auctions had a limited impact on profitability

as implemented.

REFRESH WITH RESULTS: We also observe consumer behaviors that are not captured

by the model of Marsh et al. [2024], but have important implications for effective implemen-

tation of the upgrade auction. During the sample, the airline added multiple channels to

submit bids (e.g., airline’s phone app) and notifications or nudges as the auction date ap-

proached (e.g., emails). We find that these efforts increased participation in the auctions

and the revenue collected from accepted bids. Interestingly, we also see that consumers try

to glean information from the presentation of the auction. In particular, random variation in

the initial position of the bid slider is strongly positively correlated with the submitted bid.

This is consistent with a belief by consumers that the initial position conveyed information

regarding the competitiveness of the auction when it did not.

Collectively, there are a number of insights from our results that are useful to firms for

integrating these types of upgrade procedures with revenue-management practices. First, the

two systems cannot be siloed and operate independently. In particular, the dynamic-pricing

policies of the airlines must be adjusted to account for the option that the upgrade processes

offers to consumers in order to maintain the discriminatory intent of prices. Integration can

also go further by allowing prices to adjust based on the collection of bids at each point in

time before departure. This would permit the airline to be more selective through higher

premium prices if the collection of bids was favorable. Similarly, rejected bids could be used

to personalize check-in upgrade prices, similar to a multi-round auction. We provide simple

back-of-the-envelope estimates of the potential value from these improvements to integration.

Related Literature. Our paper contributes to the expansive literature on price discrimi-

nation. This literature includes theoretical studies that characterize the distributional impli-

cations like Varian [1985] and Bergemann et al. [2015], and empirical studies that measure

the implications in different settings like Leslie [2004], Crawford and Shum [2006], Hendel

and Nevo [2006], McManus [2007], Mortimer [2007], Nair [2007], Aryal and Gabrielli [2019].

There are also a number of empirical studies that specifically focus on inter-temporal price

discrimination in the airline industry like Escobari [2012], Lazarev [2013], and Williams

[2022]. Our study contributes to this literature by measuring the return for profit and of a

hybrid approach that combines auctions and dynamic pricing.
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The studies of price-discrimination most closely related to our paper are Cui et al. [2018],

Aryal et al. [2023], and Marsh et al. [2024]. Cui et al. [2018] characterize optimal pricing of

upgrades in a static setting where consumers make strategic purchasing decisions based on

the possibility of being upgraded. We extend the analysis a dynamic setting and measure

the actual performance of these upgrade procedures for an airline while providing insights to

integration with revenue-management systems. Aryal et al. [2023] quantify the inefficiencies

that result from airlines using dynamic pricing to discriminate both inter-temporally and

intra-temporally (i.e., between cabins) by characterizing an efficient frontier of outcomes

as in Bergemann et al. [2015]. Our study provides evidence on the success of airlines in

eliminating some of those allocative inefficiencies by combining dynamic pricing with upgrade

opportunities. Our study complements the modeling and analysis in Marsh et al. [2024]. Our

focus is measuring the impact from the introduction of upgrade processes and identifying

opportunities to improving integration with revenue-management practices. Marsh et al.

[2024] estimate a structural model to perform counterfactual calculations to measure the

return to some of the opportunities that we highlight.

Our paper also contributes to the literature that studies the behavior of firms when mak-

ing complex decisions with limited resources. This typically requires heuristic approaches,

or breaking apart the larger optimization problem into a series of less-complicated ones (e.g.,

Radner [1993]). This is common for airlines, as heuristic approximations are the foundation

for otherwise intractable network routing and pricing decisions (e.g., Barnhart and Sheffi

[1993] and Barnhart et al. [2003]). Hortaçsu et al. [2023] demonstrate the meaningful loss

for airlines in delegating tasks associated with setting prices to different units within the

firm. Like Marsh et al. [2024], our study provides empirical insights into the value from

efforts to improve integration of two particular tasks, revenue-management practices that

dynamically set prices and efforts to sell upgrades through auctions.

More generally, we also contribute to the growing literature on dynamic pricing and

auctions. The literature on dynamic pricing has numerous notable theoretical (e.g., Stokey

[1979], Gale and Holmes [1993], Dana [1999], Courty and Li [2000], Armstrong [2006]) and

empirical (e.g., Graddy and Hall [2011], Sweeting [2010], Cho et al. [2018], Waisman [2021])

contributions. Like our work that extends a baseline models to include equilibrium bidding

for upgrades, others extensions include competition (e.g., Gallego and Hu [2014] and Betan-

court et al. [2022]), discounting (e.g., Dilmé and Li [2018] and Dilmé and Garrett [2022],

and multi-product firms (e.g., Aryal et al. [2023], Maglaras and Meissner [2006], Dong et al.

[2009], and Talluri and van Ryzin [2004]). Our research also contributes to the endogenous

entry literature on auctions [e.g. Samuelson, 1985, Levin and Smith, 1994, Marmer et al.,

2013, Roberts and Sweeting, 2013, Gentry and Li, 2014, Gentry et al., 2017], which arises
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due to customer selection arising from dynamically set prices. Regarding the airline industry,

Talluri and van Ryzin [1998] examine auctions as a way to price aircraft seats and Ely et al.

[2017] to resolve over-bookings. To our knowledge, Marsh et al. [2024] is the only paper to

examine the interaction between dynamic pricing and auctions.

Vulcano et al. [2002] characterize optimal auctions for allocating multiple units of a

homogeneous good. While our setting is similar, we allow for consumer arrival and demand

to be non-stationary and have multiple qualities of seats.

Alex’s rewriting and extension of the above text. Vulcano et al. [2002] characterize

optimal auctions for allocating multiple units of a homogeneous good. Similarly, Gershkov

and Moldovanu [2009] characterize the optimal mechanism for allocating multiple units of

heterogeneous goods with known qualities that cannot be reallocated and show how it can be

implemented with a menu of dynamic prices. Although our setting is similar, there are some

major differences that extends the allocation problem and allows for more realistic consumer

preferences. First, we allow consumer arrival and demand to be non-stationary which is

needed to capture upward moving prices approaching departure, a known fact about prices in

the airline industry. Second, we have multiple qualities of seats that can be reallocated using

upgrades. This generalizes the mechanism the airline can use to maximize profits. Lastly,

we allow consumer preferences for quality to be heterogeneous which captures differences

in willingness to pay for the higher quality cabin. Although preferences are more realistic,

this significantly increases the difficulty of the allocation problem because consumers have

private information in multiple dimensions and the traditional mechanism design approach

in Vulcano et al. [2002] and Gershkov and Moldovanu [2009] becomes infeasible.

Framing and behavioral literature
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2 Data

Our data come from a major North American airline that serves domestic and trans-border

markets. The fifteen months of data consist of seat inventories from every passenger flight and

all associated information on consumer transactions (i.e., itineraries, fares, and upgrades).

Altogether, the data summarize the airline’s revenue management process.

2.1 Data Sources

The inventory data track seat availability leading up to departure for every flight departing

in the sample period. For each flight, we observe the remaining capacity and number of

bookings by aircraft cabin at a daily frequency. The accompanying booking data include

information on every ticket transaction, revealing each passenger’s identification number,

itinerary, original aircraft-cabin class, and fare paid.

The data also detail two passenger upgrade mechanisms. First, the airline uses a standard

fixed fee at passenger check in that varies by flight segment. The check-in data contain all

upgrades through the check-in mechanism, revealing each passenger’s identification number,

itinerary details, and the upgrade fee paid. Additionally, the airline implements an auction

held prior to passenger check in. The auction data contain information from all bids placed

by passengers, including the passenger’s identification number, itinerary details, the bid

amount, the minimum and maximum bid the passenger could submit, and the bid acceptance

decision.

Because all data sets feature the flight details (i.e., departure date, directional segment,

and flight number) observations can be matched across the data sets by a uniquely identified

flight. Similarly, passengers in the booking data can be linked to both upgrade data sets via

the combination of the passenger identification number and itinerary details.

The data span a period of fifteen months prior to the COVID-19 pandemic. The period

begins with an overhaul of the revenue management process and the introduction of the

check-in upgrade mechanism. Six months into the sample, the airline implemented the

auction upgrade mechanism, allowing us to observe a period before the auction in addition

to the roll out of the auction. Figure 1 provides an overview of the data timeline.

2.2 Upgrade Processes

The check-in upgrade mechanism has become commonplace in the airline industry. During

the check-in period, economy passengers receive the option to pay a fixed price to have their

7



Figure 1: Data Timeline

Months of Data

0 3 6 9 12 15

Inventory Data

Revenue Data

Check-In Upgrade Data

Auction Upgrade Data

Notes: The figure details timeline of the data sources. The auction was introduced approximately six
months into the sample.

ticket upgraded on their flight. The airline allocates upgrades sequentially based on check-in

time, conditional on premium cabin seat availability.

The auction upgrade mechanism differs in both the allocation method and the timing of

the upgrade. Economy passengers who book more than five days in advance of departure

receive the option to place a bid to be upgraded on their flight. Bids can be placed any

time between booking and five days before departure. With five days remaining, the airline

selects which bids, if any, to accept.

Passengers place bids using a slider they are able to access on a web page, email, or

phone app. Figure 2 displays a visual representation of the slider. The slider limits bids to

a minimum and a maximum. Passengers observe the slider’s initial position and place bids

by finalizing the slider’s position between the minimum and the maximum.

Figure 2: Example Slider

$320 $480

$440

Notes: The figure shows an example of a slider seen by a passenger participating in an upgrade auction.
The slider features a minimum, maximum, and starting position. Bids can be made by finalizing the
position and submitting the bid.

The auction upgrade mechanism and the airline’s revenue management system are not

integrated. In fact, a third-party software manages the entire auction upgrade process.

Furthermore, the revenue management system remained unchanged after the implementation
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of the auction. As a result, pricing decisions at the time of our sample did not reflect the

change in the option value of the economy tickets associated with the new channel through

which to move between cabins after booking.

2.3 Sample Selection & Descriptive Statistics

Our final sample includes all flights, bookings, and upgrades with a flight number that ever

saw a bid placed for an upgrade auction. Table 1 shows basic descriptive statistics from the

177,108 flights in the sample. Of these flights, 74,755 were eligible for the auction. The mean

and median flight distances in the sample are both approximately 1,200 miles, indicating a

selection of medium-haul and long-haul flights. Across flights, the airline allocates capacity

fairly consistently. Typically, there are between 10 and 14 economy seats for every premium

seat, highlighting the opportunity cost associated with filling a seat in the premium cabin.

Table 1: Flight Statistics

Variable Mean St. Dev. 25th 50th 75th N

Flight Details
Distance (Miles) 1220.060 760.518 451 1121 1742 177,108
Capacity (Econ./Prem.) 11.006 2.092 10.2 10.2 13.5 177,108

Load Factor (Departure)

Economy 0.803 0.203 0.713 0.877 0.951 177,108
Premium 0.801 0.264 0.667 0.917 1.000 177,108
Premium (w/o Upgrades) 0.549 0.317 0.250 0.583 0.833 177,108

Upgrades
Check-In Upgrades 2.030 2.201 0 1 3 177,108
Auction Bids 0.969 1.621 0 0 2 74,755
Auction Upgrades 0.630 0.476 0 0 1 74,755

Notes: The table shows descriptive statistics from flights in the sample. Details include the flight distances,
seating capacities, allocation of seats, and allocation of upgrades.

Both cabins exhibit variation in the load factor (share of seating capacity sold) at de-

parture. However, on average, approximately 20% of the seats in both the economy and

premium cabins go unfilled. The variance in the load factor of the premium cabin at depar-

ture underscores the role upgrades serve in reducing the variability in occupancy. In fact,

when isolating the share of seats allocated without upgrades, we find an inner-quartile range

of 0.583. An average of 2.0 seats per flight are allocated in the premium cabin via upgrade

at check in. Across the flights eligible for the auction, the airline receives almost one bid per

flight and accepts approximately 65% of all submitted bids, resulting in an average of 0.6

seats allocated in the premium cabin via the upgrade auction.
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Table 2 provides additional descriptive statistics from consumer transactions in the sam-

ple. The average price of an economy ticket is less than half the average premium ticket

price, but there is substantial variation in the fare gap across markets, and within markets

but across time.

Consumers pay $107.48 on average to be upgraded at check in. Alternatively, the average

submitted bid in the upgrade auction is $136.09. In both cases, consumers pay less than

the average price of an outright premium ticket, but those upgraded through the auction

tend to pay more than those upgraded at check in. There is a clear trade-off associated with

removing a premium seat from the inventory with time left to sell it outright. We find that

the average economy cabin load factor at the time of the auction is 0.796. In contrast, the

average premium cabin load factor at the same time is 0.506.

Table 2: Consumer Transaction Statistics

Variable Mean St. Dev. 25th 50th 75th N

Bookings
Economy Price 182.40 127.60 96.50 153.98 234.00 18,038,507
Premium Price 398.09 218.92 251.00 367.00 509.00 1,100,438

Upgrades
Check-In Fee 107.48 72.35 49.00 89.00 149.00 359,627
Submitted Bid 136.09 116.83 40.00 100.00 200.00 72,470
Slider Minimum 111.46 97.69 25.00 80.00 160.00 72,470
Slider Start 179.80 145.60 50.00 145.00 260.00 72,470
Slider Maximum 232.49 167.90 85.00 195.00 325.00 72,470

Notes: The table shows descriptive statistics from consumer transactions in the sample. These statistics
come from bookings, as well as the check-in upgrade mechanism and the auction upgrade mechanism.
Details include prices, fees, bids, and auction slider characteristics.

Given that upgrades account for more than a quarter of premium seat occupancy, under-

standing the trade-offs the airline and consumers face in the presence of upgrade mechanisms

is crucial when considering the challenges and opportunities associated with using auctions

alongside dynamic pricing. In the next section, we consider a model to quantify these trade-

offs and help guide intuition.

3 Model

In this section, we use the modeling framework from Marsh et al. [2024] to identify the trade-

offs of adding upgrade mechanisms to revenue management systems. The model features a

monopoly airline seeking to maximize profits by allocating a fixed capacity of premium and
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economy seats on a flight. Utility-maximizing consumers arrive with individual preferences

and choose from a set of options.

3.1 Timing

Time is discrete and denoted by t ∈ {1, ..., T, T + 1}. The airline begins selling tickets for

premium and economy seats in t = 1 and continues to sell tickets in each t ≤ T . At the

beginning of t̃, where 1 < t̃ < T , the airline upgrades consumers via the auction mechanism.

In T + 1, consumers check in for their flight, and the airline upgrades consumers via the

check-in mechanism. The flight departs at the end of time.

A flight has initial capacity k1 = (kf1 , k
e
1), which represent the total number of seats in the

premium and economy cabins, respectively. Let kt = (kft , k
e
t ) be the number of remaining

seats at t. In t ≤ T , the airline sets prices pt = (pft , p
e
t ) for premium and economy tickets,

respectively, before the arrival of any consumers.

3.2 Consumer Arrival and Preferences

Nt consumers arrive in period t ≤ T . Upon arrival, consumers learn their preferences and

choose an option from the choice set {f, e, o}, where f , e, and o represent the premium cabin,

economy cabin, and outside option, respectively. Consumers cannot delay their decision.

Consumer i’s utility from choice m in period t is defined as

umit ≡ νiξ
m
i − pmt , (1)

where νi represents consumer i’s willingness to pay for the flight and ξmi is consumer i’s

quality measure of choice m. The quality of the outside option, ξoi , and its price, po, are

normalized to 0 for all i. Similarly, we normalize the quality of the economy cabin to ξei = 1

for all i, allowing us to simply write ξfi = ξi. Because the premium and economy cabins are

vertically-differentiated, we allow the quality of premium seats to have support ξi = [1,∞).

Given prices and upgrade beliefs, consumer i chooses m ∈ {f, e, o} that maximizes ex-

pected utility. In the absence of upgrade mechanisms, the consumer simply compares the

utilities specified in Equation 1 and selects the available option that maximizes utility. How-

ever, in the presence of an upgrade mechanism, an economy ticket has an option value

associated with the probability of being upgraded, while the utilities of choices f and o

remain unchanged.

Before the introduction of the auction, consumer i’s expected utility from choice e can
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be written as

U e
it = ueit + ϕt max

{
0, νi(ξi − 1)− r

}
, (2)

where ueit is the guaranteed utility from the economy cabin. Let ϕt be the belief about

the probability a check-in upgrade is available at price r. Then, ϕt max{0, νi(ξi − 1) − r}
represents the expected utility gain from the check-in mechanism.

Alternatively, when both upgrade mechanisms are utilized, consumer i’s expected utility

from choice e is

Ue
it = ueit + %∗it

(
νi(ξi − 1)− b∗it

)
+ ϕa

t

(
1− %∗it

)
max

{
0, νi(ξi − 1)− r

}
. (3)

Again, ueit is the guaranteed utility from the economy cabin. Let %∗it be consumer i’s belief

about the probability of winning an upgrade through the auction given their optimal bid b∗it.

Then, %∗it(νi(ξi − 1)− b∗it) represents the expected utility gain from the auction mechanism.

If consumer i does not win an upgrade through the auction, they believe a check-in upgrade

with price r will be available with probability ϕa
t . Therefore, ϕa

t (1−%∗it) max{0, νi(ξi−1)−r}
represents the expected utility gain from the check-in mechanism.

3.3 Airline’s Dynamic Program

In each t ≤ T , the airline sets prices pt = (pft , p
e
t ) prior to the arrival of the Nt consumers.

Let Et[Q
m(p,k)] be the expected quantity demanded in cabin m at time t given prices p

and remaining capacities k. Then the airline’s expected per-period revenues can be written

Et[R(p,k)] = pfEt[Q
f (p,k)] + peEt[Q

e(p,k)]. Additionally, the airline faces a constant

marginal “peanut” cost from servicing a passenger in cabin m equal to cm, with ce ≤ cf and

c = (cf , ce). The airline realizes these costs at the end of T + 1. Total costs are defined as

C(k) = cf (kf1 − k
f
d ) + ce(ke1 − ked), or the peanut costs from each consumer in the cabins at

departure.

Because the airline sets the price of the check-in upgrade in advance of any sales, the

airline’s boundary condition is VT+1(k) = 0. For discount factor δ ∈ [0, 1], the value function

in period T is

VT (k) = max
p∈R2

+

ET [R(p,k)]− δ
∫

k′∈K

C(k′)dHT (k′|k,p), (4)

where K is the state space and Ht(k
′|k,p) is the distribution of next period’s state condi-

tional upon this period’s state and prices.
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In period t < T , the airline’s dynamic program is:

Vt(k) = max
p∈R2

+

Et[R(p,k)] + δ

∫
k′∈K

Vt+1(k
′)dHt(k

′|k,p). (5)

The solution to Equations 4 and 5 is a policy function pt(k), obtained using backwards

induction.

3.4 Bid Acceptance

Let iu = (−1, 1) be the upgrade vector (i.e. removing one seat from remaining premium

capacity and adding one seat back to remaining economy capacity). Then, accepting n bids

at t̃ implies a change in the capacity state from kt̃ to kt̃ + niu. The cost of accepting n bids

at time t is the opportunity cost of selling those seats in the future with price or fixed fee

mechanisms. As Vt(k) is the value of having k seats at t and selling them only with dynamic

pricing, let Ut(k) be the value of having kf premium seats at t and selling them through

check-in upgrades. Because optimal prices are assumed to ignore upgrades, Vt(k) and Ut(k)

are linearly separable and the total value of k in t can be written as TVt(k) = Vt(k) +Ut(k),

and the total cost of n upgrades through the auction is the change in the total value function

TVt(kt + niu)− TVt(kt). Define the marginal opportunity cost of the nth upgrade, denoted

∆TVt(n,k), to be

∆TVt(n,k) =


0 if n = 0

TVt(k + niu)− TVt(k + (n− 1)iu) if n ∈ {1, 2, ..., kf}

∞ otherwise.

(6)

At the time of the auction in t̃, the airline orders all bids submitted in previous periods.

The marginal revenue of the nth upgrade is simply b(n). If ∆TVt(n,k) is increasing in n,

then the airline will continue accepting bids until the marginal cost of an upgrade exceeds

the marginal revenue, or

∆TVt̃(n+ 1,k) > b
(n+1)

t̃
. (7)

Let nu be the smallest n that satisfies Equation (7) given remaining capacities k and the set

of bids (i.e. the number of bids accepted).
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4 Empirical Analysis

The model in Section 3 introduces a set of trade-offs for consumers and the airline that arise

with the implementation of the auction upgrade mechanism. In this section, we highlight

some of the key trade-offs and use the data to explore the implications for consumer behavior

and airline profits. We also consider consumer behavior not explicitly captured by the model

that our data are uniquely able to address.

4.1 Consumer Response

First, the auction elicits a change in the option value to consumers purchasing economy

tickets, as highlighted in Equations 2 and 3. Although both expected utilities are weakly

greater than the utility from economy in the case of no upgrades,

Once the auction is implemented, an increase in sold capacity is observed in the premium

cabin at five days out whereas the rate of increase in the economy cabin decreases. This

comes from bids being accepted at five days out and economy passengers being moved to

the premium cabin.

Figure 3: Share of Seats Sold Approaching Departure by Cabin

(a) Economy Cabin (b) Premium Cabin

Notes: Quarter 1 corresponds to months 1-3 and Quarter 5 corresponds to months 13-15.

Table 6 shows how bids are affected based on how close departure was when the bids

were placed. While there is some evidence that
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Table 3: Participation Regressions

Submitted Bids
Poisson Regression

(1) (2) (3)

Variables
Load Factor at Auction: Economy 0.5874∗∗∗ 0.5793∗∗∗

(0.0356) (0.0356)
Load Factor at Auction: Premium 0.2097∗∗∗ 0.2100∗∗∗

(0.0158) (0.0158)
Slider Minimum -0.0019∗∗∗ -0.0018∗∗∗

(0.0004) (0.0004)
Slider Maximum -0.0013∗∗∗ -0.0011∗∗∗

(0.0003) (0.0003)

Fixed-effects
Flight Number Yes Yes Yes
Departure Date Yes Yes Yes
Departure Day of Week Yes Yes Yes

Fit statistics
Observations 30,413 30,413 30,413
Pseudo R2 0.07024 0.06359 0.07069
BIC 113,542.2 114,275.8 113,513.9

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the fepois() function in the fixest R package [Bergé, 2018].
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Table 4: Participation Regressions

Submitted Bids
Poisson Regression

(1) (2) (3) (4)

Variables
Load Factor at Auction: Economy 0.5793∗∗∗ 0.3649∗∗∗ 0.6255∗∗∗ 0.1942∗∗∗

(0.0356) (0.0514) (0.0355) (0.0502)
Load Factor at Auction: Premium 0.2100∗∗∗ 0.5826∗∗∗ -0.0380∗ 0.5584∗∗∗

(0.0158) (0.0276) (0.0192) (0.0274)
Slider Minimum -0.0018∗∗∗ -0.0017∗∗∗ -0.0018∗∗∗ -0.0018∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004)
Slider Maximum -0.0011∗∗∗ -0.0010∗∗ -0.0009∗∗ -0.0008∗

(0.0003) (0.0003) (0.0003) (0.0003)
Departure Load Factor: Economy 0.3037∗∗∗ 0.6279∗∗∗

(0.0448) (0.0462)
Departure Load Factor: Premium - Full -0.4913∗∗∗ -0.9046∗∗∗

(0.0311) (0.0357)
Check-In Upgrades -0.0700∗∗∗ -0.0951∗∗∗

(0.0026) (0.0029)

Fixed-effects
Flight Number Yes Yes Yes Yes
Departure Date Yes Yes Yes Yes
Departure Day of Week Yes Yes Yes Yes

Fit statistics
Observations 30,413 30,413 30,413 30,413
Pseudo R2 0.07069 0.07302 0.07831 0.08546
BIC 113,513.9 113,277.4 112,683.6 111,914.7

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the fepois() function in the fixest R package [Bergé, 2018].
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Table 5: Number of Check-Ins Purchased Regressions

Poisson Regression

Check-In Upgrades
(1) (2)

Variables
Load Factor at Auction: Economy 0.5675∗∗∗ -0.3795∗∗∗

(0.0325) (0.0478)
Load Factor at Auction: Premium -1.708∗∗∗ -0.2929∗∗∗

(0.0227) (0.0266)
Submitted Bids -0.1013∗∗∗ -0.1115∗∗∗

(0.0067) (0.0068)
Auction Upgrades -0.0314∗∗∗ -0.0400∗∗∗

(0.0073) (0.0074)
Departure Load Factor: Economy 1.406∗∗∗

(0.0452)
Departure Load Factor: Premium - Full -1.808∗∗∗

(0.0331)

Fixed-effects
Flight Number Yes Yes
Departure Date Yes Yes
Departure Day of Week Yes Yes

Fit statistics
Observations 74,671 74,671
Pseudo R2 0.19176 0.22553
BIC 273,625.3 262,702.4

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the fepois() function in the fixest R package [Bergé, 2018]. 84
observations were removed due to only 0 outcomes.
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Table 6: Bidding Regressions: Approaching Departure

Bid Normalized Bid Bid Normalized Bid
(1) (2) (3) (4)

Variables
Slider Minimum 0.980∗∗∗ 0.972∗∗∗

(0.027) (0.027)
Slider Maximum 0.043 0.034

(0.028) (0.028)
Number of Days Out 0.069∗∗∗ 0.057∗∗∗ 0.082∗∗∗ 0.065∗∗∗

(0.009) (0.006) (0.010) (0.006)
Economy Fare Paid 0.037∗∗∗

(0.004)
log(Economy Fare Paid) 0.048∗∗∗

(0.004)

Fixed-effects
Flight Number Yes Yes Yes Yes
Departure Date Yes Yes Yes Yes
Departure Day of Week Yes Yes Yes Yes

Fit statistics
Observations 72,467 72,467 67,521 67,521
R2 0.908 0.063 0.909 0.071

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018].
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4.2 Implementation Impact

Figure 4: Bid Acceptance Probability by Remaining Capacity State

(a) Conditional Probability Heat-Map (b) Joint Probability Heat-Map

Notes: A “state” is an ordered pair of the share of remaining seats (capacity) in each cabin the day before
the auction. A tile on the heat-map represents one possible state. The economy and premium remaining
capacity shares are binned by rounding to the nearest 1/12th. Figure 4b is the product of Figure 4a and
the probability of each state (tile), and the probabilities in each tile sum up to the unconditional
acceptance probability in Table 2. Figure 12 in the Appendix shows the distribution of states.

As fewer premium seats remain the day before the auction, the probability of being upgraded

decreases. This is because the opportunity cost associated with an upgrade is larger the

fewer premium seats remain. As the share of economy seats sold the day before the auction

increases, a slight decreasing in the win probability can be observed for tiles in between 1

and 5 on the y-axis. This is likely due to two effects: a competition effect and demand effect.

Flights that have sold more economy seats are going to have more bidders on average. This

is the competition effect. However, flights that have sold more economy seats before the

auction are likely to have higher overall demand, which means more consumers will arrive

closer to departure willing to pay full price for premium, increasing the opportunity cost of

an upgrade. This is the demand effect.

Economy and premium being full is the modal outcome and the distribution is concen-

trated in the bottom right corner.

Figure 5 shows the total premium capacity sold approaching departure broken out by

how the seats were sold: at full price, with the auction, and at check-in. While a general
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increase in the number of premium seats sold outright (i.e. at full-price) from year 1 to

year 2 is present1, the auction reduced the share of premium seats sold at check-in from

about 35% in year 1 to about 15% in year 2, suggesting that the airline prefers using the

auction to allocate upgrades. About 7.5% of total premium capacity was allocated through

the auction mechanism in the fifth quarter of data. 34% of total premium capacity was

allocated through the check-in mechanism in the first quarter of data which dropped to 16%

in the fifth quarter. Total allocated premium capacity increased slightly in the fifth quarter

from 78% in the first quarter to 82% in the fifth quarter.

While it is tempting to claim that the auction eats into check-in upgrades more than

full-price sales, such a claim cannot be made as there is a general increase in the number of

premium seats sold across all flights due to changes in the revenue management system that

took place around the time the check-in system was implemented. Furthermore, the auction

system was implemented on top of the already existing check-in system, so it is hard to know

how many passengers would substitute away from full-price premium tickets to the economy

ticket with the auction option value. However, there is a very modest decrease in the seats

sold at full price and with at check-in in Figure 6. This effect is not from the airline changing

how often flights are flown as the effect can be seen in levels (Figure 6a) and in percentages

(Figure 6b), where the effect is the most prominent. A similar effect can be observed in

Figure 7 for premium revenues where the auction eats into check-in and full-price revenues

over time.

1This is also observed in Figure 3
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Figure 5: Share of Premium Seats Allocated Approaching Departure by Each Mechanism

(a) Quarter 1 (b) Quarter 5

Notes:

Figure 6: Premium Seats Sold With Each Mechanism Over Time

(a) Number of Premium Seats Sold by Purchase
Channel

(b) Share of Premium Seats Sold by Purchase
Channel

Notes:
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4.3 Trade-offs and Revenue Implications

Figure 7: Impact of Each Mechanism on Premium Revenue Over Time

(a) Share of Premium Revenue by Mechanism (b) Revenue Per Seat Flown

Notes:

The auction most notably eats into revenues from upgrades at check-in, which is consistent

with Figure 6.
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(a) Fare Revenue (b) Upgrade Fee Revenue

Figure 8: The auction most notably eats into revenues from upgrades at check-in, which is consistent
with Figure 6.
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Table 7: Effect of Upgrades on Revenues Per Flight

Revenue

Economy Premium (Full) Check-In Auction Total
(1) (2) (3) (4) (5)

Variables
Economy Sold 104.10∗∗∗ 0.74∗∗∗ 0.66∗∗∗ 0.07∗ 105.57∗∗∗

(1.90) (0.17) (0.07) (0.03) (1.97)
Premium Sold: All 208.88∗∗∗ 235.96∗∗∗ 1.55∗ 2.12∗∗∗ 448.51∗∗∗

(10.42) (3.49) (0.74) (0.33) (12.26)
Premium Sold: Auction -106.37∗∗∗ -234.43∗∗∗ 19.66∗∗∗ 218.76∗∗∗ -102.37∗∗∗

(17.37) (4.11) (1.32) (5.16) (18.80)
Premium Sold: Check-In -87.15∗∗∗ -235.02∗∗∗ 165.40∗∗∗ 0.76∗ -156.00∗∗∗

(12.10) (3.92) (3.43) (0.34) (12.81)

Fixed-effects
Flight Number Yes Yes Yes Yes Yes
Departure Date Yes Yes Yes Yes Yes
Departure Hour Yes Yes Yes Yes Yes

Fit statistics
Observations 74,750 74,750 74,750 74,750 74,750
R2 0.783 0.746 0.567 0.721 0.810
Within R2 0.439 0.511 0.459 0.664 0.474

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018]. The
unit of observation is at the flight level. The independent variables are the number of seats
sold at departure acquired through each mechanism. The dependent variables for Columns
1 and 2 are the respective revenues attributable to fares from transactions that were never
involved in an upgrade. Economy fares that are upgraded are removed from the total in
Column 1, and, likewise, Column 2 only includes fares from full-price premium purchases.
The dependent variables for Column 3 and 4 are the total revenues attributable to each
upgrade mechanisms. This includes the base economy fare as well as the fee attributable to
the purchase of the upgrade. Finally, the dependent variable in Column 5 is the total
revenue of the flight i.e. it is the sum of the dependent variables in Columns 1-4.
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Table 8: Effect of Upgrades on Revenues Per Flight

Revenue

Economy Premium (Full) Check-In Auction Total
(1) (2) (3) (4) (5)

Variables
Economy Sold 107.41∗∗∗ 0.41 0.88∗∗∗ 0.15∗ 108.85∗∗∗

(2.14) (0.21) (0.09) (0.07) (2.23)
Premium Sold: All 231.80∗∗∗ 232.36∗∗∗ 1.17 4.09∗∗∗ 469.41∗∗∗

(14.42) (3.70) (1.12) (0.80) (16.25)
Premium Sold: Auction -322.78∗∗∗ -240.77∗∗∗ 21.69∗∗∗ 209.86∗∗∗ -332.01∗∗∗

(25.11) (5.13) (1.63) (5.43) (25.72)
Premium Sold: Check-In -90.16∗∗∗ -235.27∗∗∗ 170.83∗∗∗ 7.34∗∗∗ -147.26∗∗∗

(15.56) (4.52) (3.73) (0.75) (16.97)

Fixed-effects
Flight Number Yes Yes Yes Yes Yes
Departure Date Yes Yes Yes Yes Yes
Departure Hour Yes Yes Yes Yes Yes

Fit statistics
Observations 30,413 30,413 30,413 30,413 30,413
R2 0.774 0.747 0.575 0.679 0.800
Within R2 0.423 0.489 0.474 0.578 0.447

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018]. The
unit of observation is at the flight level. The independent variables are the number of seats
sold at departure acquired through each mechanism. The dependent variables for Columns
1 and 2 are the respective revenues attributable to fares from transactions that were never
involved in an upgrade. Economy fares that are upgraded are removed from the total in
Column 1, and, likewise, Column 2 only includes fares from full-price premium purchases.
The dependent variables for Column 3 and 4 are the total revenues attributable to each
upgrade mechanisms. This includes the base economy fare as well as the fee attributable to
the purchase of the upgrade. Finally, the dependent variable in Column 5 is the total
revenue of the flight i.e. it is the sum of the dependent variables in Columns 1-4.
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Table 9: Revenue Per Flight Regressions

Revenue

Economy Premium (Full) Check-In Auction Total
(1) (2) (3) (4) (5)

Variables
Economy Sold 104.19∗∗∗ 0.85∗∗∗ 0.66∗∗∗ 0.10∗∗ 105.80∗∗∗

(1.90) (0.17) (0.07) (0.04) (1.97)
Premium Sold: Full 210.28∗∗∗ 237.38∗∗∗ 1.53∗ 1.52∗∗∗ 450.72∗∗∗

(10.47) (3.53) (0.75) (0.31) (12.32)
Premium Sold: Auction 100.17∗∗∗ -1.21 21.18∗∗∗ 220.48∗∗∗ 340.62∗∗∗

(16.27) (3.16) (1.39) (5.16) (18.85)
Premium Sold: Check-In 123.86∗∗∗ 3.23 166.95∗∗∗ 2.46∗∗∗ 296.49∗∗∗

(12.55) (2.37) (3.56) (0.40) (14.25)

Fixed-effects
Flight Number Yes Yes Yes Yes Yes
Departure Date Yes Yes Yes Yes Yes
Departure Hour Yes Yes Yes Yes Yes

Fit statistics
Observations 74,750 74,750 74,750 74,750 74,750
R2 0.783 0.746 0.567 0.721 0.810
Within R2 0.439 0.512 0.459 0.664 0.474

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018]. The
unit of observation is at the flight level. The independent variables are the number of seats
sold at departure acquired through each mechanism. The dependent variables for Columns
1 and 2 are the respective revenues attributable to fares from transactions that were never
involved in an upgrade. Economy fares that are upgraded are removed from the total in
Column 1, and, likewise, Column 2 only includes fares from full-price premium purchases.
The dependent variables for Column 3 and 4 are the total revenues attributable to each
upgrade mechanisms. This includes the base economy fare as well as the fee attributable to
the purchase of the upgrade. Finally, the dependent variable in Column 5 is the total
revenue of the flight i.e. it is the sum of the dependent variables in Columns 1-4.
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4.4 Revenue Regression

log (ynt + 1) = AuctionntβATE + αn + λt + εnt (8)

where ynt is a revenue variable for flight number n on departure date t, Auctionnt is an

indicator for if flight number n had the auction on departure date t, βATE is the coefficient

on the auction indicator which is the average treatment effect, αn is a fixed-effect for flight

number n, and λt is a fixed-effect for departure date t. Table ?? contains the average

treatment effect on average economy revenue, premium revenue, and total revenue scaled

per seat mile flown.

4.5 Behavioral Considerations

Consumers in our model are fully informed about the auction and have fully rational beliefs

regarding auction and check-in upgrades. In reality, these assumptions might be too strong

and consumer behavior may differ from that of the model. For example, the way the auction

is presented to consumers might influence their bidding behavior or they might not be fully

informed about the auction. We explore evidence for deviations from fully rational behavior

in the rest of this section.

Information and Notifications

Our model assumes that all consumers are aware of the auction and check-in upgrade mecha-

nisms. Although this might be a plausible assumption later in the sample, it is likely auction

participation increased over time as consumers became aware of the auction. Because the

auction is introduced in the middle of the sample, we can observe consumers adopting the

auction over time and examine what influenced consumers to participate in the auction.

The most noticeable effect in our data on participation is through notifications to pas-

sengers about the auction as well as making bidding easier by increasing the channels in

which passengers can place bids. When the auction was first introduced at the beginning of

the seventh month of data, passengers could place bids through two channels: the airline’s

mobile app or the marketing page for the auction on the airline’s website. Shortly after, the

airline added another channel where bids could be placed on the confirmation page imme-

diately after purchasing a ticket. The last two bid channels to be added during our sample

period were a pre-travel email that is sent to passengers who have purchased an economy

ticket on a qualifying flight and on the passenger’s booking page which shows their booked

flights.

Figure 9 shows how auction participation increased over time, when bids are submitted

relative to departure, and how the introduction of new bid channels and notifications im-
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pacted participation. Even though participation was increasing steadily since the auction

was introduced, the pre-travel email notification and bid channel approximately doubled the

number of bids for all flights on the same departure date, as seen in Figure 9a. After the

pre-travel email was introduced, the increasing trend in bids submitted through the existing

channels (the mobile app, marketing page, and confirmation page) is dampened, suggesting

that the pre-travel email did cannibalize some bids that would have been placed through

existing channels. However, considering that the doubling of bids happens immediately after

the introduction of the pre-travel email and the number of bids placed through this channel

remains high, it is unlikely that the increase in bids is exclusively from cannibalization. Fig-

ure 9b shows that the vast majority of bids through the email channel are placed closer to

departure when the frequency of pre-travel emails is highest.

Figure 9: Number of Bids for All Flights by Bid Channels

(a) Number of Bids by Departure Date (b) Number of Bids Approaching Departure

Notes: The number of bids in Figure 9a using a K-nearest neighbors Gaussian kernel regression using
K = 21 and the rule-of-thumb bandwidth. The number of bids in Figure 9b are not smoothed.

An increase in auction participation can affect auction outcomes in a number of ways.

First, in the canonical first-price sealed bid auction without endogenous entry, increased

participation should increase bids by lessening the extent bidders shave down their valuations,

consequentially increasing auction revenue. Second, the pre-travel email may have made

consumers aware of the auction resulting in some flights receiving a positive number of

bids when they otherwise would have received zero bids. The increased information should
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unambiguously increase auction revenue and bids.2 Although this is related to the increased

participation discussed in the previous point, it is different in that it is unclear if the bidding

behavior of those made aware of the auction through the pre-travel email should be any

different than those who were already aware of the auction. Lastly, related to the second

point, if the passengers made aware of the auction from the pre-travel email are inherently

“less sophisticated” consumers and submit lower, “irrational” bids, the average submitted

bid could decrease with an ambiguous effect on average auction revenue.

We use the introduction of the pre-travel email to examine how increased auction partic-

ipation from notifications affected bids and auction revenue. Figure 10 shows the effects of

the emails on the average number size of submitted and accepted bids. Across all flights, the

implementation of the pre-travel email resulted 0.75 more submitted bids and 0.5 accepted

bids as seen in Figures 10a and 10b, respectively. These effects are larger for flight numbers

that were receiving more bids on average before to the email, suggesting that the email

was notifying uninformed passengers of the auction or reminding forgetful passengers to bid.

The increase in participation and consequentially accepted bids also increases bid revenue

by about $50 across all flights highlighted in Figure 10c. While the effect on the number of

submitted and accepted bids appears to differ across the distribution of flight numbers, this

does not appear to be the case with average bid revenue. The reason for this is because the

average submitted bid decreases slightly when the pre-travel email is introduced, as seen in

Figure 10d. In fact, the average bid decreases the most for the top 50% of flight numbers

with the most submitted bids before the email. As these are likely flights where the upgrade

is valued more by consumers, this suggesting that the email attracted bidders who placed

lower bids further suggesting that these bidders either value the upgrade less or are less

sophisticated bidders.

Table 10 shows the effects discussed above estimated with a linear regression in columns

1 through 4. The estimates similar both qualitatively and quantitatively. Column 5 shows

the difference in average submitted bids through each bid channel with the omitted group

being bids placed on the confirmation page immediately after purchasing tickets. Compared

to bids placed on the confirmation page, bids placed through the marketing page3 are $3.50

higher on average. However, bids placed through the mobile app and the pre-travel are

on average $6.15 and $4.73 lower, respectively. Bids placed through the confirmation page

immediately after purchase are likely submitted by consumers behaving most similar to the

consumers in our model.

Framing from Slider Presentation

2We define the average bid when no bids are submitted to be zero.
3The marketing page is the page on the airline’s website that advertises the upgrade auction.
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Figure 10: Impact of Pre-Travel Email on Participation, Bidding, and Auction Revenue

(a) Average Number of Bids Per Flight (b) Average Accepted Bids Per Flight

(c) Average Auction Revenue Per Flight (d) Average Submitted Bid

Notes: Each variable is measured at the flight level. The top and bottom 50% refers to the share of flight
numbers sorted by their average number of submitted bids in the period before the pre-travel email.
Averages are computed by smoothing flight level variables with a Gaussian kernel regression and the
rule-of-thumb bandwidth. Smoothing is performed separately before and after the pre-travel email
introduction.
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Table 10: Pre-Travel Email Affect On Flight Auctions

Number of Number of Bid Submitted
Submitted Bids Accepted Bids Revenue Bid

(1) (2) (3) (4) (5)

Variables
Post Email 0.7519∗∗∗ 0.5078∗∗∗ 48.33∗∗∗ -0.0341

(0.0336) (0.0258) (3.653) (0.9006)
Marketing Page 3.503∗∗∗

(0.8216)
Mobile App -6.150∗∗∗

(0.7364)
Pre-Travel Email -4.737∗∗∗

(0.6605)

Fixed-effects
Flight Number Yes Yes Yes Yes Yes
Flight Month Yes Yes Yes Yes Yes
Flight Day of Week Yes Yes Yes Yes Yes
Departure Hour Yes Yes Yes Yes Yes

Fit statistics
Observations 74,757 74,757 74,757 74,933 74,366
R2 0.21897 0.18224 0.15856 0.89572 0.89717

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018]. The
excluded group for column 5 is bids placed at the confirmation page immediately after
purchasing a ticket. Bids placed through the bookings page are excluded from the sample
in column 5 as the bid channel was implemented near the end of the sample and only
resulted in 567 bids.

Because passengers place bids with a slider as shown in Figure 2, it is possible that bidding

is affected by the way the slider is presented. The slider affects bidding a few different ways.

First, it induces endogenous entry as passengers who are not willing to bid the minimum do

not enter the auction (or effectively have a bid of zero). Secondly, the slider causes bids to be

discrete as the slider increases in increments of $5. Both of these are entirely consistent with

the consumers in our model. However, the initial position of the slider can influence bidding

behavior whether through rational information extraction or behavioral framing effects. We

explore to what extend there is evidence of framing in the data.

Figure 11 shows the distribution of the “normalized” bids and slider starting position.

The normalization of these variables transforms them into a percentage between the slider
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Figure 11: Evidence of Framing Effect in Bid Distributions

(a) Distribution of normalized bid
and starting position

(b) Distribution of normalized bid conditional on
normalized starting position

Notes: The densities in a are estimated with the density() function from the stats package in base R [R
Core Team, 2021]. The conditional densities in b are estimated with the cde() function in the hdrcde R
package [Hyndman et al., 2021] using the default bandwidths.

minimum and maximum values. The most common bid was the minimum and the most

common initialize positions were at the 0.75 and 0.30 positions on the slider. There are

noticeable humps in the distribution of normalized bids around the 0.30 and 0.75 position.

To check if these humps in the normalized bid distribution correspond to the the initial slider

positions, Figure 11b shows the conditional distribution of the normalized bid given different

normalized starting positions of 0.30 and 0.75. For each initial position, the second most

common bid after the slider minimum is around the initial slider position, suggesting that

consumers condition their bid on the starting position.

The humps in the conditional distributions suggest that this is a framing effect rather

than passengers (rationally) extracting information from the initial position of the slider.

Assuming that a higher initial position informs passengers that the auction is more compet-

itive and a higher bid is necessary to obtain an upgrade, one would expect the initial slider

to move the density of the conditional bid distribution to the right, increasing the average

of the conditional bid distribution. That is, the CDF conditional on a starting position of

0.75 should first order stochastically dominate the CDF conditional on a starting position

of 0.30. However, that is not what we observe (see Figure 13 in the Appendix) and instead

see probability density pooling around the starting position with little change to the rest of

the distribution.
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This framing effect can be seen in Table 11 where a a 1% increase in the starting position

of the slider is associated with a 0.11% to 0.15% depending upon the specification. In column

1, a one dollar increase in the slider starting value is associated with an 11.5 cent increase

in submitted bids conditional on the slider minimum and maximum values. However, notice

that a one dollar increase in the slider minimum value is associated with a 87.2 cent increase

in submitted bids. The fact that this effect is less than one should be expected because

increasing the slider minimum should result in a smaller increase in submitted bids if the

airline is setting the slider minimum optimally. In column 2, a one percentage point increase

in the normalized starting position is associated with a 14.8 cent increase in submitted bids

conditional on the slider minimum and maximum values. Lastly, column 3 shows that a

one percentage point increase in the normalized starting position is associated with a 0.152

percentage point increase in the normalized bid.

Table 11: Bidding Regressions: Framing

Bid Normalized Bid
(1) (2) (3)

Variables
Slider Minimum 0.8857∗∗∗ 0.9427∗∗∗

(0.0332) (0.0279)
Slider Maximum 0.0113 0.0575∗

(0.0254) (0.0280)
Slider Starting 0.1176∗∗∗

(0.0209)
Normalized Starting Position 0.1410∗∗∗ 0.1769∗∗∗

(0.0194) (0.0134)

Fixed-effects
Flight Number Yes Yes Yes
Departure Date Yes Yes Yes
Departure Day of Week Yes Yes

Fit statistics
Observations 72,467 72,467 72,467
R2 0.90782 0.90772 0.06592

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018].
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Table 12: Bidding Regressions: Framing

Bid Normalized Bid
(1) (2) (3)

Variables
Slider Minimum 0.8728∗∗∗ 0.9327∗∗∗

(0.0347) (0.0285)
Slider Maximum -0.0013 0.0476

(0.0267) (0.0288)
Slider Starting 0.1241∗∗∗

(0.0226)
Economy Fare Paid 0.0348∗∗∗ 0.0346∗∗∗

(0.0037) (0.0037)
Normalized Starting Position 0.1489∗∗∗ 0.1810∗∗∗

(0.0207) (0.0140)
log(Economy Fare Paid) 0.0441∗∗∗

(0.0036)

Fixed-effects
Flight Number Yes Yes Yes
Departure Date Yes Yes Yes
Departure Day of Week Yes Yes

Fit statistics
Observations 67,521 67,521 67,521
R2 0.90898 0.90886 0.07256

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018].
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A Additional Figures and Tables

Figure 12: Distribution of Capacity States Before Auction

(a) Joint Distribution Heat-Map (b) Joint Cumulative Distribution Contours

Notes: A “state” is an ordered pair of the share of remaining seats (capacity) in each cabin the day before
the auction. A tile on the heat-map represents one possible state. The economy and premium remaining
capacity shares are binned by rounding to the nearest 1/12th.
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Table 13: Effect of Upgrades on Revenue Per Seat Flown

Revenue Per Seat Flown

Economy Premium (Full) Check-In Auction Total
(1) (2) (3) (4) (5)

Variables
Economy Sold 0.38∗∗∗ 0.01 0.05∗∗∗ 0.00 0.33∗∗∗

(0.01) (0.02) (0.01) (0.00) (0.01)
Premium Sold: All 2.75∗∗∗ 18.74∗∗∗ 0.02 0.13∗∗∗ 4.28∗∗∗

(0.11) (0.38) (0.07) (0.03) (0.13)
Premium Sold: Auction -1.45∗∗∗ -19.24∗∗∗ 1.62∗∗∗ 18.02∗∗∗ -1.37∗∗∗

(0.13) (0.36) (0.11) (0.42) (0.13)
Premium Sold: Check-In -1.11∗∗∗ -19.60∗∗∗ 13.64∗∗∗ 0.04 -1.59∗∗∗

(0.10) (0.34) (0.28) (0.03) (0.10)

Fixed-effects
Flight Number Yes Yes Yes Yes Yes
Departure Date Yes Yes Yes Yes Yes
Departure Hour Yes Yes Yes Yes Yes

Fit statistics
Observations 74,750 74,750 74,750 74,750 74,750
R2 0.681 0.712 0.564 0.725 0.719
Within R2 0.233 0.490 0.456 0.668 0.289

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018]. The
unit of observation is at the flight level. The independent variables are the number of seats
sold at departure acquired through each mechanism. The dependent variables for Columns
1 and 2 are the respective revenues per seat flown in each cabin attributable to transacted
fares that were never involved in an upgrade. Economy fares that are upgraded are
removed from the total in Column 1, and, likewise, Column 2 only includes fares from
full-price premium purchases. The dependent variables for Column 3 and 4 are the total
revenues attributable to each upgrade mechanisms per seat flown in the premium cabin.
This includes the base economy fare as well as the fee attributable to the purchase of the
upgrade. Finally, the dependent variable in Column 5 is the total revenue per seat flown of
the flight i.e. it is the sum of the dependent variables in Columns 1-4.
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Table 14: Revenue Per Seat Flown Regressions

Revenue Per Seat Flown

Economy Premium (Full) Check-In Auction Total
(1) (2) (3) (4) (5)

Variables
Economy Sold 0.39∗∗∗ 0.02 0.05∗∗∗ 0.01∗ 0.33∗∗∗

(0.01) (0.02) (0.01) (0.00) (0.01)
Premium Sold: Full-Price 2.74∗∗∗ 18.85∗∗∗ 0.01 0.08∗∗ 4.28∗∗∗

(0.11) (0.39) (0.07) (0.03) (0.13)
Premium Sold: Auction 1.26∗∗∗ -0.71∗ 1.64∗∗∗ 18.11∗∗∗ 2.85∗∗∗

(0.14) (0.32) (0.13) (0.42) (0.16)
Premium Sold: Check-In 1.64∗∗∗ -0.68∗ 13.65∗∗∗ 0.13∗∗∗ 2.71∗∗∗

(0.14) (0.33) (0.30) (0.04) (0.16)

Fixed-effects
Flight Number Yes Yes Yes Yes Yes
Departure Date Yes Yes Yes Yes Yes
Departure Hour Yes Yes Yes Yes Yes

Fit statistics
Observations 74,750 74,750 74,750 74,750 74,750
R2 0.681 0.713 0.564 0.725 0.719
Within R2 0.233 0.491 0.456 0.668 0.288

Clustered (Flight Number) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Notes: Estimated with the feols() function in the fixest R package [Bergé, 2018]. The
unit of observation is at the flight level. The independent variables are the number of seats
sold at departure acquired through each mechanism. The dependent variables for Columns
1 and 2 are the respective revenues per seat flown in each cabin attributable to transacted
fares that were never involved in an upgrade. Economy fares that are upgraded are
removed from the total in Column 1, and, likewise, Column 2 only includes fares from
full-price premium purchases. The dependent variables for Column 3 and 4 are the total
revenues attributable to each upgrade mechanisms per seat flown in the premium cabin.
This includes the base economy fare as well as the fee attributable to the purchase of the
upgrade. Finally, the dependent variable in Column 5 is the total revenue per seat flown of
the flight i.e. it is the sum of the dependent variables in Columns 1-4.
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Figure 13: Evidence of Framing Effect in Bid CDF

Notes:
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